Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21120201-6    https://doi.org/10.11896/cldb.21120201
  高分子与聚合物基复合材料 |
聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究
马仁博1, 胡焕波2, 沈婉婷1, 吴唯1,*
1 华东理工大学材料科学与工程学院,中德先进材料联合研究中心,上海 200237
2 裕克施乐塑料制品(太仓)有限公司,江苏 苏州 215400
Study on Compatibility of Butyl Polyacrylate/Hindered Phenol Damping Hybrid System
MA Renbo1, HU Huanbo2, SHEN Wanting1, WU Wei1,*
1 Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
2 OECHSLER Plastic Products (Taicang) Co.,Ltd., Suzhou 215400, Jiangsu, China
下载:  全 文 ( PDF ) ( 5233KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受阻酚等小分子存在易自聚集析出的问题,影响阻尼性能。为了研究杂化体系长期使用的稳定性,使用熔点降低法和溶度参数法测定了四种不同结构受阻酚和聚丙烯酸丁酯(PBA)间的Flory-Huggins相互作用参数χ,并绘制了热力学相图。研究表明,随着温度向熔点方向升高,χ越来越小,杂化体系呈现上临界共溶温度相行为(UCST)。紫外可见分光光度透光率测试结果以及广角X射线衍射(WAXRD)结果验证了所绘制热力学相图的准确性。χ值的大小受聚合物-受阻酚间氢键强度和受阻酚分子结构的影响,提高小分子-大分子间氢键强度可有效降低χ值,增大受阻酚羟基受阻程度,并且增大受阻酚的范德华体积会使χ变大,影响体系稳定性。相图对优化杂化体系的受阻酚类型及用量,预测杂化体系相行为具有良好的指导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马仁博
胡焕波
沈婉婷
吴唯
关键词:  相图  相容性  阻尼  受阻酚  聚丙烯酸酯    
Abstract: Small molecules, such as hindered phenols, are prone to self-aggregation and precipitation, which affects their damping properties. In order to study the long-term stability of hybrid systems, the Flory-Huggins interaction parameters χ between poly(butyl acrylate) (PBA) and four kinds of hindered phenols were measured by melting point reduction method and solubility parameter method. The thermodynamic phase diagrams were drawn. The results showed that the χ decreased with the increase of temperature toward melting point, and the system possessed an upper critical temperature (UCST) behavior. The accuracy of the thermodynamic phase diagram was verified by the results of the transmittance test of ultraviolet spectrophotometer and wide-angle X-ray diffraction (WAXRD). The value of χ depended on the intensity of hydrogen bond between polymer and hindered phenol and the molecular structure of hindered phenol. Increasing the degree of hindered phenolic hydroxyl and Van der Waals volume of hindered phenol would increase χ and decrease the stability of the system. Phase diagrams is useful to optimize the type and dosage of hindered phenols in hybrid systems and to predict the phase behavior of hybrid systems.
Key words:  phase diagram    compatibility    damping    hindered phenol    polyacrylate
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TQ334.1  
基金资助: 中国国家自然科学基金委与德国研究联合会(NSFC-DFG)中德科学中心“中德合作研究小组”项目(GZ1448)
通讯作者:  * 吴唯,华东理工大学材料科学与工程学院教授、博士研究生导师。2000年华东理工大学材料学专业博士毕业,2003年在德国柏林工业大学完成博士后研究。目前主要从事高性能聚合物材料、功能聚合物材料、聚合物增材制造等方面的研究工作。发表论文200余篇,包括Nanoscale、Material & Design、Journal of Materials Chemistry C、Composites Communications、Polymer、ACS Applied Polymer Materials、Nanotechnology、RSC Advances等,申请发明专利60多项。wuwei@ecust.edu.cn   
作者简介:  马仁博,2016年6月、2019年6月分别于西南石油大学和华东理工大学获得工学学士和硕士学位。目前主要研究领域为高分子材料的阻尼性能。发表论文2篇,包括Journal of Polymer Engineering、《南京工业大学学报》等。
引用本文:    
马仁博, 胡焕波, 沈婉婷, 吴唯. 聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究[J]. 材料导报, 2023, 37(15): 21120201-6.
MA Renbo, HU Huanbo, SHEN Wanting, WU Wei. Study on Compatibility of Butyl Polyacrylate/Hindered Phenol Damping Hybrid System. Materials Reports, 2023, 37(15): 21120201-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120201  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21120201
1 Yu H R, Zhang L M, Zhang Y B, et al. Journal of Dalian Jiaotong University, 2017, 38(2), 15 (in Chinese).
于海然, 张立民, 张艳斌, 等. 大连交通大学学报, 2017, 38(2), 15.
2 Treviso A, Van Genechten B, Mundo D, et al. Composites Part B, 2015, 78B, 144.
3 Song M, Zhao X Y, Li Y, et al. RSC Advances, 2014, 4(89), 48472.
4 Zhang G, Nam C W, Petersson L, et al. Macromolecules, 2018, 51(5), 1927.
5 Utton C A, Papadimitriou I, Kinoshita H, et al. Journal of Alloys & Compounds, 2017, 717, 303
6 Aaron M H, Sebastian S, Paul F N, et al. Science Advances, 2017, 3(6), e1700270.
7 Shi Z B, Ma F C, Zhang Q C, et al. Journal of Materials Science and Engineering, 2017, 35(3), 368 (in Chinese).
史忠兵, 马凤仓, 张全成, 等. 材料科学与工程学报, 2017, 35(3), 368.
8 Tian Y W, Booth J, Meehan E, et al. Molecular Pharmaceutics, 2013, 10(1), 236.
9 Shi G P, Yin X T, Wu G Z. Polymer, 2018, 153, 317.
10 Song M, Yue X L, Wang X J, et al. Macromolecular Materials and Engineering, 2020, 305, 2000222.
11 Song M, Yue X L, Wang X J, et al. e-Polymers, 2020, 20(1), 482.
12 Zhang L, Chen D L, Fan X Q, et al. Materials, 2019, 12(7), 1008.
13 Zu K M, Hu Q M, Wu H, et al. Polymer Engineering & Science, 2020, 60(12), 3001.
14 Hu Q M, Wang J H, Xu K M, et al. Journal of Polymer Engineering, 2020, 40(5), 394.
15 Van Krevelen D W, Nijenhuis K T. Properties of polymers, 1997, pp.71.
16 Van Krevelen D W, Nijenhuis K T. Properties of polymers, 2010.
17 Nishi T, Wang T T. Macromolecules, 1975, 8(6), 909.
18 Marsac P J, Li T L, Taylor L S. Pharmaceutical Research, 2009, 26(1), 139.
19 Zhao Y Y, Petra I, Hitesh P, et al. Journal of Pharmaceutical Sciences, 2011, 100(8), 3196.
20 Thakral S, Thakral N K. Journal of Pharmaceutical Sciences, 2013, 102(7), 2254.
[1] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[2] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[3] 秦若男, 果春焕, 李艳春, 邵帅齐, 姜风春. 多孔金属材料阻尼性能的研究进展[J]. 材料导报, 2023, 37(15): 21100001-10.
[4] 马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
[5] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[6] 张倩倩, 陈冲, 张聪, 马晶博, 张程, 毛丰. 硼对高铬铸铁铸渗层组织和性能的影响[J]. 材料导报, 2022, 36(4): 20110229-7.
[7] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[8] 薛新, 吴芳, 郑超, 魏雨函, 陈小超, 白鸿柏. 金属橡胶阻尼软夹芯结构材料研究进展[J]. 材料导报, 2022, 36(22): 22040029-11.
[9] 徐建林, 王涛, 康成虎, 杨文龙, 牛磊. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 20110227-9.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[12] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[13] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[14] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[15] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed