Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22040029-11    https://doi.org/10.11896/cldb.22040029
  宇航材料 |
金属橡胶阻尼软夹芯结构材料研究进展
薛新1,2,*, 吴芳1,2, 郑超1,2, 魏雨函1,2, 陈小超1,2, 白鸿柏1,2
1 福州大学机械工程及自动化学院,福州 350116
2 福州大学金属橡胶与振动噪声研究所,福州 350116
Research Progress of Flexible Sandwich Structure Materials with Metal-rubber Damping Core
XUE Xin1,2,*, WU Fang1,2, ZHENG Chao1,2, WEI Yuhan1,2, CHEN Xiaochao1,2, BAI Hongbai1,2
1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2 Institute of Metal-rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, China
下载:  全 文 ( PDF ) ( 9073KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属橡胶阻尼软夹芯结构材料采用等材复合制造工艺,具有基材成熟、阻尼高、刚柔并济和制造成本低等技术特点,由于其独特的金属丝编织空间网络勾连微结构,可获得优异的干摩擦阻尼耗能和热防护等优异性能,在国防和高端装备部件复杂使役工况下具有重要的应用前景。然而,金属橡胶材料及夹芯构件制备工艺和力学性能的一致性差、微结构与性能之间的映射关系不明确等关键问题阻碍了其性能优化调控和产业化应用。本文全面报道了金属橡胶材料及夹芯构件的研究进展,介绍了典型金属丝网微结构及机织工艺、宏细观本构理论预测模型、数值建模与全场测量技术、航空及相关领域工程应用案例分析等,剖析了金属橡胶阻尼软夹芯结构材料研制和热振服役过程中存在问题,并对其衍生结构材料研究和潜在应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛新
吴芳
郑超
魏雨函
陈小超
白鸿柏
关键词:  金属橡胶  夹芯结构  制备工艺  性能表征  阻尼减振    
Abstract: Flexible sandwich structure materials with metal-rubber damping core have the advantages with stable basic wire material, high damping, combined stiffness and flexibility, low-cost production and so on. Due to the special microstructure with space woven wire mesh, they can exhibit excellent dry friction damping characteristics and thermal protective performances. It is vital for the defense and high-level components serving in complex or extreme conditions. However, the key problems including the poor consistence between fabrication technology and mechanical performance, and the unsure relationship between microstructure and performance have not been solved. This hampers the performance optimization and mass production application of flexible sandwich structure materials. In this paper, the research progress of flexible sandwich structure materials with metal-rubber damping core is comprehensively reported. The typical microstructures of metallic wire mesh, woven processes, macroscopic and mesoscopic constitutive models, numerical modelling technologies, full-field measuring technologies and some engineering applications are introduced. The manufacturing problems and thermo-vibration responses are decomposed respectively. The research prospects and potential applications on the extended structure materials are presented.
Key words:  metal-rubber    sandwich structure    fabrication technology    performance characterization    damping vibration
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB383  
基金资助: 中央军委科技委国防创新特区重点项目(XXX-033-01);国家自然科学基金(12272094;12002088);福建省自然科学基金(2022J01541;2020J05103)
通讯作者:  * xin@fzu.edu.cn   
作者简介:  薛新,福州大学机械工程及自动化学院教授、博士研究生导师。旗山学者,福建省级高层次B类人才。2008年华南理工大学机械制造及自动化专业硕士毕业后,加入广州毅昌科技股份有限公司从事结构设计工作,2011年赴葡萄牙阿威罗大学留学,2016年获机械工程博士学位和葡萄牙博士后基金资助,2016年底入职福州大学,现担任金属橡胶与振动噪声研究所副所长。目前主要从事金属橡胶材料及国防装备减振降噪技术等方面的研究工作。主持国防创新特区重点项目、国家自然科学面上和青年基金、装备预研项目等8项课题项目,发表论文50余篇,包括International Journal of Plasticity、 Composite Structures、 Mechanical System and Signal Process、 Material & Design、 Thin-walled Structures、 Mechanics of Materials、 Journal of Materials Processing Technology等期刊。
引用本文:    
薛新, 吴芳, 郑超, 魏雨函, 陈小超, 白鸿柏. 金属橡胶阻尼软夹芯结构材料研究进展[J]. 材料导报, 2022, 36(22): 22040029-11.
XUE Xin, WU Fang, ZHENG Chao, WEI Yuhan, CHEN Xiaochao, BAI Hongbai. Research Progress of Flexible Sandwich Structure Materials with Metal-rubber Damping Core. Materials Reports, 2022, 36(22): 22040029-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040029  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22040029
1 Zhang J X, Ye Y, Yuan H, et al. Thin Wall Struct, 2020, 148, 106525.
2 Huang S F, Wan Z P, Zhang X X, et al. Applied Thermal Engineering, 2019, 148, 1224.
3 Wang Z G, Zhou W, Liu J F. Journal of Central South University, 2017, 24, 1671.
4 Zhang J X, Yuan H, Qin Q H, et al. Advanced Engineering Materials, 2020, 22(3),1901159.
5 Kang K J. Progress in Materials Science, 2015, 69, 213.
6 Schaedler T A, Jacobsen A J, Torrents A, et al. Science, 2011, 334, 962.
7 Yang D Q, Zhong S. Acta Materiae Compositae Sinica, 2020, 37(12), 3229(in Chinese).
杨德庆, 钟山. 复合材料学报, 2020, 37(12), 3229.
8 Li X D,Xiong J,Ma L, et al. Composites Science and Technology, 2018, 158, 67.
9 Frenzel T, Kadic M, Wegener M, et al. Science, 2017, 358, 1072.
10 Ling B, Wei K, Qu Z L, et al. International Journal of Mechanical Sciences, 2021, 195, 106220.
11 Gadot B, Martinez O R, Roscoat S R, et al. Acta Materialia, 2015, 96, 311.
12 Chandrasekhar K, Rongong J, Cross E. Mechanical Systems and Signal Processing, 2019, 118, 13.
13 Wu F, Liu T, Xiao X T, et al. Composite Structures, 2019, 209, 830.
14 Xue X, Ruan S X, Bai H B, et al. Mechanics of Materials, 2020, 148, 103447.
15 Yang P, Bai H B, Xue X, et al. Mechanical Systems and Signal Proces-sing, 2019, 132, 622.
16 Bai H B, Lu C H, Cao F L, et al. Metal-rubber materials and enginee-ring applications, Science Press, China, 2014, pp. 7(in Chinese).
白鸿柏, 路纯红, 曹凤利,等. 金属橡胶材料及工程应用,科学出版社, 2014, pp. 7
17 Li Z Y. The design of metallic rubber component, National Defense Industry Press, China, 2000, pp. 41(in Chinese).
李中郢. 金属橡胶构件的设计,国防工业出版社, 2000, pp. 41.
18 Rodney D, Gadot B, Martinez O R, et al. Nature Materials, 2016, 15(1), 72.
19 Ma Y H, Zhang Q C, Zhang D Y, et al. Acta Materialia, 2015, 96, 89.
20 Ma Y H, Zhang Q C, Zhang D Y, et al. Journal Materials Science, 2017, 52, 3741.
21 Zhang D Y, Scarpa F, Ma Y H, et al. Materials & Design, 2014, 56, 69.
22 Lai Y, Wu Y, Sheng P, et al. Nature Materials, 2011, 10, 620.
23 Hu J L, Du Q, Gao J H, et al. Materials & Design, 2018, 140, 231.
24 Zhang W, Xue X, Bai H B. Composite Structures, 2021, 255, 112886.
25 Jiao P C, Alavi A H. International Materials Reviews, 2021, 66(6), 365.
26 Kim B, Lee S, Kim J. Science Advances, 2020, 6(1), eaax9324.
27 Kwon S C, Jo M S, Oh H U. International Journal of Aerospace Enginee-ring, 2017, 2017, 5496053.
28 Xue X, Yang P, Shao Y C, et al. International Journal of Lightweight Materials and Manufacture, 2020, 3(2), 88.
29 Huang K, Bai H B, Lu C H, et al. Rare Metal Materials and Enginee-ring, 2016, 45(3), 681(in Chinese).
黄凯,白鸿柏,路纯红,等. 稀有金属材料与工程, 2016, 45(3), 681.
30 Li A X, Xue X, Bai H B. Journal of Fuzhou University (Natural Science Edition), 2021, 49(6), 815(in Chinese).
李昂熙,薛新,白鸿柏. 福州大学学报, 2021, 49(6), 815.
31 Li T, Bai H B, Lu C H. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3),481(in Chinese).
李拓, 白鸿柏, 路纯红.机械科学与技术, 2015, 34(3),481.
32 Dong X G, Qu F S, Zhang K F, et al. Journal of Basic Science and Engineering, 2013, 21(2),365(in Chinese).
董旭刚, 曲凤盛, 张凯锋, 等. 应用基础与工程科学学报, 2013, 21(2),365.
33 Jiang G F, Li Q Y, Wang C L, et al. Materials and Design, 2015, 67, 354.
34 Wang X M, Su Y D, Wu B, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 16(in Chinese).
王向明, 苏亚东, 吴斌, 等. 航空制造技术, 2018, 61(10), 16.
35 Peng F H, Wu Y W, Bai H B, et al. Shock and Vibration, 2020, 2020, 9720167.
36 Wang Y J, Zhang Z J, Xue X M, et al. Thin-Walled Structures, 2020, 154, 106816.
37 Xie M J. Jionts for composite materials, ShangHai Jiaotong University Press, China, 2016, pp. 4(in Chinese).
谢鸣九. 复合材料连接技术, 上海交通大学出版社, 2016, pp. 4.
38 Guo W B, Luan T M, Leng X S, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(4), 962.
39 Wang S S, Wei Y H, Xue X, et al. Acta Materiae Compositae Sinica, 2022, 39(3), 1308(in Chinese).
王珊珊,魏雨函,薛新,等. 复合材料学报,2022, 39(3), 1308.
40 Yu H J, Liu W H, Wang Y S. China Mechanical Engineering, 2016, 27(23), 3167(in Chinese).
余慧杰, 刘文慧,王亚苏.中国机械工程, 2016, 27(23), 3167.
41 Li Y Y, Huang X Q. Acta Armamentarii, 2008,29(7), 819(in Chinese).
李宇燕,黄协清. 兵工学报, 2008, 29(7), 819.
42 Zou G P, Zhang B, Chang Z L, et al. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5), 1125.(in Chinese).
邹广平,张冰,唱忠良,等.力学学报, 2018, 50(5), 1125.
43 Jiang H Y, Ao H R, Xia Y H, et al. Journal of Experimental Mecha-nics, 2002, 17(3),363(in Chinese).
姜洪源, 敖宏瑞, 夏宇宏, 等. 实验力学, 2002, 17(3),363.
44 Yan H, Jiang H Y, Liu W J, et al. Acta Physica Sinica, 2010, 59(6), 4065(in Chinese).
闫辉, 姜洪源, 刘文剑, 等. 物理学报, 2010, 59(6), 4065.
45 Zhao G W, Li D Y, Chen Y. Journal of Vibration and Shock, 2014, 33(22), 193(in Chinese).
赵国伟, 李德勇, 陈勇. 振动与冲击, 2014, 33(22), 193.
46 Zou G P, Liu Z, Cheng H Z, et al. Journal of Vibration and Shock, 2015, 34(22), 173(in Chinese).
邹广平, 刘泽, 程贺章, 等. 振动与冲击, 2015, 34(22), 173.
47 Zhang B, Lang Z Q, Billings S A, et al. Mechanical Systems and Signal Processing, 2013, 39, 207.
48 Yu H J, Zhu Y X, Xu Y H. Journal of Vibration and Shock, 2020, 39(6),230(in Chinese).
余慧杰, 朱逸轩, 许亚辉. 振动与冲击, 2020, 39(6),230.
49 Yu H J, Sun X T, Xu J, et al. International Journal of Non-Linear Mechanics, 2017, 96, 93.
50 Xiao K, Bai H B, Xue X, et al. Ordnance Material Science and Engineering, 2019, 42(1), 11(in Chinese).
肖坤, 白鸿柏, 薛新, 等. 兵器材料科学与工程, 2019, 42(1), 11.
51 Yang K P, Fan W X, Cao C C, et al. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(12),1830.(in Chinese).
杨坤鹏, 樊文欣, 曹存存, 等. 机械科学与技术, 2017, 36(12), 1830.
52 Jing L, Wang Z H, Zhao L M. Mechanics in Engineering, 2015(1), 1(in Chinese).
敬霖,王志华,赵隆茂. 力学与实践, 2015(1), 1.
53 Xiao D B, Zhao G P. Acta Aeronautica et Astronautica Sinica, 2017, 38(6), 140(in Chinese).
肖登宝,赵桂平. 航空学报, 2017, 38(6), 140.
54 Gibson L J, Ashby M F. Cellular solids: structure and properties, Cambridge University Press, UK, 1997, pp. 123.
55 Feldmann M, Sedlacek G, Geβ Ler A. Mechanics of Composite Materials, 2007,43(2), 183.
56 Ren Z G, Lou M L, Tian Z M. Chinese Quarterly of Mechanics, 2003, 24(3), 364(in Chinese).
任志刚, 楼梦麟, 田志敏. 力学季刊, 2003, 24(3), 364.
57 Liu Z H. Investigation on strength analysis method for SPS ship structures. Master's Thesis, Harbin Engineering University, China, 2009(in Chinese)
刘志慧. 钢夹层板船体结构强度分析方法研究.硕士学位论文,哈尔滨工程大学, 2009.
58 Lyu H W. Research of transverse vibration of an axially moving viscoelastic sandwich. Ph.D. Thesis,Southwest Jiaotong University, China, 2017(in Chinese)
吕海炜. 轴向运动粘弹性夹层梁横向振动研究. 博士学位论文,西南交通大学, 2017.
59 Ren Z Y, Fang R Z, Chen X C, et al. Journal of Mechanical Enginee-ring, 2021, 57(24), 211(in Chinese).
任志英,方荣政,陈小超,等. 机械工程学报, 2021, 57(24), 211.
60 Dijk N P, Wu D, Persson C, et al. International Journal of Solids and Structures, 2019, 168, 211.
61 Dong X P, Huang M J, Li X Y, et al. Materials Science and Technology, 2010, 18(6), 785(in Chinese).
董秀萍, 黄明吉, 李星逸,等. 材料科学与工艺,2010,118(6),785.
62 Ren Z Y, Shen L L, Bai H B, et al. Mechanical Systems and Signal Processing, 2021, 154, 107567.
63 Bargmann S,Klusemann B, Markmann J,et al. Progress in Materials Science, 2018, 96, 322.
64 Gao W J, Zhang J J, Sun B Z, et al. Composite Structures, 2019, 230, 111525.
65 Ma Y H, Zhang Q C, Wang Y F, et al. Materials and Design, 2019, 181, 108067.
66 Xu F. Theoretical and Applied Mechanics Letters, 2018, 8(2), 83.
67 Huang M J, Li B, Dong X P. Materials Reports, 2022, 36(1), 178(in Chinese).
黄明吉,李斌,董秀萍.材料导报, 2022, 36(1), 178.
68 Ma Y, Zhang Q, Zhang D, et al. Smart Materials and Structures, 2014, 23, 125016.
69 Ma Y H, Lu H W, Zhu H X, et al. Acta Aeronautica et Astronautica Si-nica, 2013, 34(6), 1301(in Chinese).
马艳红, 陆宏伟, 朱海雄, 等. 航空学报, 2013, 34(6), 1301.
70 Ma Y H, Wang H, Hong J. Journal of Aerospace Power, 2009, 24(2), 390(in Chinese).
马艳红, 王虹, 洪杰. 航空动力学报, 2009, 24(2), 390.
71 Guo B T, Ma Y H, Zhao F A, et al. Journal of Aerospace Power, 2003, 18(1), 119(in Chinese).
郭宝亭, 马艳红, 赵福安, 等. 航空动力学报, 2003,18(1), 119.22040029-22040029-
72 Oh H, Jeon S H, Kim T, et al. Smart Materials and Structures, 2015, 24(4), 45010.
73 Oh H, Kwon S C, Youn S H. Smart Materials and Structures, 2015, 24(1),015009.
74 Kwon S, Jeon S H, Oh H U. Cryogenics, 2015, 67, 19.
75 Kwon S, Jeon S H, Oh H U. Smart Materials and Structures, 2016, 25(5), 55004.
76 Youn S H, Jang Y S, Han J H. Journal of Intelligent Material Systems and Structures, 2009, 21(4), 407.
77 Youn S H, Jang Y S, Han J H. Smart Materials and Structures, 2011, 20(7), 75017.
78 Song W X, Li Z X, Xie X G, et al. Optics and Precision Engineering, 2021, 29(3), 524(in Chinese).
宋文轩, 李宗轩, 谢晓光, 等. 光学精密工程, 2021, 29(3), 524.
79 Feng K, Liu W, Zhang Z, et al. Tribology International, 2016, 94, 26.
80 Feng K, Zhao X Y, Zhang Z M, et al. Tribology Transactions, 2016, 59(3), 480.
81 Feng K, Liu W H, Zhao X Y, et al. Tribology Transactions, 2017, 60(3), 448.
82 Feng K, Zhao X, Huo C J, et al. Tribology International, 2016, 103, 529.
83 Feng K, Liu Y, Zhao X, et al. Journal of Tribology-Tansactions of the ASME, 2016, 138, 217022.
84 Liu W, Feng K, Lyu P. Nonlinear Dynamics, 2018, 91(1), 655.
85 Zhang K, Zhao X Y, Feng K, et al. International Journal of Thermal Sciences, 2018, 127, 91.
86 Zhao Z, Feng K, Zhao X, et al. Journal of Tribology-Tansactions of the ASME, 2018, 140, 517025.
87 Song C L, Ren Y K, He W J, et al. Journal of Experiments in Fluid Mechanics, 2020, 34(2), 39(in Chinese).
宋春磊, 任玉坤, 何文俊, 等. 实验流体力学, 2020, 34(2), 39.
88 Yuan T. Analysis and experimental study on gas sealing performance of metal rubber seal. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese)
袁涛. 金属橡胶密封件气密封性能分析及试验研究. 硕士学位论文, 哈尔滨工业大学, 2018.
89 Wu G Q, Yan H, Xia Y H, et al. Rare Metal Materials and Enginee-ring, 2010, 39(11), 1923(in Chinese).
武国启, 闫辉, 夏宇宏, 等. 稀有金属材料与工程, 2010, 39(11), 1923.
90 Jiang H Y, Wu G Q. Journal of Mechanical Engineering, 2010, 46(19), 70(in Chinese).
姜洪源, 武国启. 机械工程学报, 2010, 46(19), 70.
91 He G, Liu P, Tan Q B. Journal of the Mechanical Behavior of Biomedical Materials, 2012,5(1), 16.
92 Jiang G F, He G. Materials & Design, 2014, 56, 241.
93 Li Q Y, Jiang G F, Wang C L, et al. Materials and Science and Engineering C, 2015,57, 349.
94 Wang Q, Qiao Y Q, Cheng M Q, et al. Scientific Reports, 2016, 6(1), 26248.
95 Jiang G F, Li Q Y, Wang C L, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 139.
96 Liu W, Chen D, Jiang G, et al. Nanomedicine-Nanotechology Biology and Medicine, 2018, 14(1), 153.
97 Yang Y, Ren Z Y, Zhao S Y, et al. Colloids and Surfaces A, 2019, 573, 157.
98 Yuan T, Yan H, Zhao Y L, et al. In: 2018 4th International Conference on Applied Materials and Manufacturing Technology. Nanchang, China,2018,pp.1055.
99 Xi Y H, Chen T N. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(12), 1673(in Chinese).
奚延辉, 陈天宁.机械科学与技术, 2008, 27(12), 1673.
100 Henmi Y, Naito Y, Jimbo R, et al. Journal of Oral & Maxillofacial Research, 2016, 7(4), e2
101 Zhu Y, Wu Y W, Bai H B, et al. Shock and Vibration, 2019, 2019, 7297392.
102 Atkins M D, Kienhöfer F W, Kang K J, et al. Journal of Thermal Science and Engineering Applications, 2020, 13(4), 1.
103 Wang X M, Su Y D, Wu B, et al. Aeronautical Manufacturing Techno-logy, 2018, 61(10), 16(in Chinese).
王向明, 苏亚东, 吴斌, 等. 航空制造技术, 2018, 61(10), 16.
104 Ma Y H, Tong X L, Zhu B, et al. Acta Physica Sinica, 2013, 62(4), 470(in Chinese).
马艳红, 同小龙, 朱彬,等. 物理学报,2013, 62(4), 470.
105 Zhang D Y, Xia Y, Zhang Q C, et al. Journal of Aerospace Power, 2018, 33(6), 1432(in Chinese).
张大义, 夏颖, 张启成,等. 航空动力学报, 2018, 33(6), 1432.
106 Li T, Bai H B, Xue X, et al. China Mechanical Engineering, 2019, 30(9), 1009(in Chinese).
李拓, 白鸿柏, 薛新,等.中国机械工程, 2019,30(9), 1009.
[1] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[2] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[3] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[4] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[5] 黄明吉, 李斌, 董秀萍. 基于三维骨架细化的金属橡胶三维建模方法研究[J]. 材料导报, 2022, 36(1): 20120035-5.
[6] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[7] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[8] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[9] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[10] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[11] 骆吉源, 肖国庆, 丁冬海, 种小川, 任金翠. 二硼化锆粉体合成研究现状与展望[J]. 材料导报, 2021, 35(21): 21159-21168.
[12] 王萍, 俞科静, 钱坤, 李永胜, 王纬波. 剪切增稠液在阻尼减振技术中的应用研究[J]. 材料导报, 2021, 35(17): 17218-17224.
[13] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[14] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[15] 李凯, 高文明, 杜莹, 李箭. 直接CH4固体氧化物燃料电池金属支撑体研究现状与发展[J]. 材料导报, 2020, 34(17): 17149-17154.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed