Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050268-8    https://doi.org/10.11896/cldb.21050268
  高分子与聚合物基复合材料 |
缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究
罗志强1, 赖家美1, 黄志超2, 莫明智1, 李美艳1
1 南昌大学聚合物成型研究室,南昌 330031
2 华东交通大学载运工具与装备教育部重点实验室,南昌 330013
Study on Repeated Low Velocity Impact Properties of Stitched Carbon Fiber Foam Sandwich Composites
LUO Zhiqiang1, LAI Jiamei1, HUANG Zhichao2, MO Mingzhi1, LI Meiyan1
1 Polymer Processing Research Lab,Nanchang University, Nanchang 330031, China
2 Key Laboratory for Conveyance and Equipment of the Ministry of Education, East China Jiao Tong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 11479KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空辅助传递模塑(VARTM)工艺制备了铺层为[45°/-45°/0°/90°]2s的缝合/未缝合泡沫夹芯结构复合材料,并在15 J的冲击能量下对其进行了五种不同冲击次数的落锤反复低速冲击实验,通过Micro-CT扫描对冲击后的纤维面板内部不可见的损伤进行表征,从而揭示其内部损伤机理。结果表明:泡沫夹芯结构复合材料损伤形式主要包括分层损伤、基体开裂和纤维断裂。经历前五次冲击后,泡沫夹芯结构复合材料主要产生分层损伤和基体开裂,纤维断裂仅出现在冲击位置;随着冲击次数的增加,纤维断裂的现象愈加明显。面板层间损伤从冲击表面至材料内部的主要损伤模式不同,其损伤面积呈递增状,靠近泡沫的第7—8层的层间分层所带来的损伤面积最大。缝线树脂柱能够有效改善泡沫夹芯结构的抗冲击性能,与未缝合相比,缝合泡沫夹芯复合材料在相同冲击次数下的残余最大冲击载荷的提升幅度为33.4%~48.1%。此外,还得到了15 J能量下冲击次数及凹坑深度的关系曲线图,并拟合出相应的数学公式,再结合曲线拐点位置,能够实现对复合材料损伤模式的预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗志强
赖家美
黄志超
莫明智
李美艳
关键词:  泡沫夹芯结构  反复冲击性能  CT扫描  损伤机理  拐点    
Abstract: The stitched/unstitched foam sandwich structures with a layer of [45°/-45°/0°/90°]2s were prepared by the vacuum assisted transfer molding (VARTM) process. Subsequently, five repeated low-velocity impact experiments with different falling hammer impact times were carried out on them under the impact energy of 15 J, and then the invisible damage inside the fiber panel after impact was characterized by Micro-CT scanning, thus revealing the internal damage mechanism. The results show that the damage patterns of foam sandwich composite materials mainly include delamination damage, matrix cracking and fiber fracture. After the first five impacts, the foam sandwich structure composite material mainly produces delamination damage and matrix cracking, and the fiber fracture only appeares at the impact position; with the increase in the number of impacts, fiber fractures become more serious. The main damage pattern of the interlayer damage of the panel is different from the impact surface to the inside of the material; the damage area is increasing and the damage area of the 7th to 8th interlayer delamination close to the foam is the largest. In addition, the stitch resin column can effectively improve the impact resistance of the foam sandwich structure. Compared with unstitched, the residual max impact force of the stitched foam sandwich composite material with the same impact times can be increased by 33.4%—48.1%. The relationship curve between the number of impacts and the depth of the pit under 15 J energy is obtained, and the corresponding mathematical formula is fitted. With the inflection point position of the curve combined, the damage pattern of composite material can be predicted.
Key words:  foam sandwich structure    repeated impact performance    CT scanning    damage mechanism    inflection point
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51763016;51875201)
通讯作者:  laijm@163.com   
作者简介:  罗志强,2019年9月至2022年6月硕士就读于南昌大学,主要从事聚合物成型方面的研究。
赖家美,南昌大学机电工程学院副教授。2004年毕业于南昌大学,获得材料加工工程专业博士学位。主要从事聚合物基复合材料制备和性能研究,主持国家自然科学基金2项、江西省青年科学家培养对象计划项目1项、省(部)级科研项目3项等,发表EI论文10余篇。
引用本文:    
罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
LUO Zhiqiang, LAI Jiamei, HUANG Zhichao, MO Mingzhi, LI Meiyan. Study on Repeated Low Velocity Impact Properties of Stitched Carbon Fiber Foam Sandwich Composites. Materials Reports, 2022, 36(19): 21050268-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050268  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050268
1 Andrzej K,Sebastian P,Angelika W,et al. Composite Structures, 2020,252,112735.
2 Cesim A,Bulent M I,Mümin K.Composites Part B, 2013,49,80.
3 Zu Z, Yuan T Y, Tang S S,et al. Science Technology and Engineering,2019,19(28),101(in Chinese).
俎政,原天宇,汤双双,等.科学技术与工程, 2019,19(28),101.
4 Zhou J J, Wen P H, Wang S N. Composites Part B, 2020,185,107771.
5 Huseyin E Y, Bulent M I, Tuba A.Composites Part B, 2015, 79, 383.
6 Xia F, Wu X Q. Composite Structures, 2009, 92(2), 412.
7 Zheng X X, Zheng X T, Qu T J,et al. Journal of Northwestern Polytechnical University, 2010, 28(5),774 (in Chinese).
郑晓霞,郑锡涛,屈天骄,等.西北工业大学学报, 2010,28(5),774.
8 Wang J, Li J, Gangarao H, et al.Composite Structures, 2019, 220,412.
9 Long S, Yao X, Wang H, et al.Composite Structures, 2018, 197,10.
10 Ruan J Q, Lai J M, Wang S, et al. Polymer Materials Science & Engineering, 2020,36(7), 103(in Chinese).
阮金琦,赖家美,王森,等.高分子材料科学与工程, 2020, 36(7), 103.
11 Hu G Q,Lai J M, Gong X H, et al. China Plastics, 2018,32(9), 102(in Chinese).
胡根泉,赖家美,龚小辉,等.中国塑料, 2018,32(9),102.
12 Ma J, Yan Y, Liu Y J, et al. Journal of Reinforced Plastics and Compo-sites, 2012, 31(18),1236.
13 Qiu Y H, Xu Q L, Yin C P,et al. Fiber Reinforced Plastics/Composites, 2017(10),46 (in Chinese).
仇艳慧,徐庆林,尹昌平,等.玻璃钢/复合材料, 2017(10), 46.
14 Ki W K, Heung S K, Man S K, et al. Materials Science & Engineering, 2006, 483,333.
15 Jia J, Yan S. Science and Engineering of Composite Materials, 2020, 27(1), 245.
16 Wu Y, Liu Q, Fu J, et al. Composites Part B Engineering, 2017,121,122.
17 Abdullah A,Mustafa Ö B,Onur Ç, et al.Composite Structures, 2015,125,425.
18 Liao B B, Zhou J W, Li Y, et al. International Journal of Mechanical Sciences, 2020,182,105783.
19 Guo K L, Zhu L, Li Y G, et al. Composite Structures, 2018,200,398.
20 Hu J Y. Research on low-velocity impact properties and damage mechanism of woven fabric composite. Master's Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
胡靖元. 织物复合材料低速冲击特性与损伤机理研究.硕士学位论文,哈尔滨工业大学, 2010.
21 Xu Y, Zhen S, Ying Y, et al. Chinese Journal of Aeronautics, 2003,16(2), 73.
[1] 黄明吉, 李斌, 董秀萍. 基于三维骨架细化的金属橡胶三维建模方法研究[J]. 材料导报, 2022, 36(1): 20120035-5.
[2] 孙科科, 彭小芹, 冉鹏, 王淑萍, 曾路, 李静静, 王双. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100.
[3] 马衍轩, 于霞, 徐亚茜, 李梦瑶, 赵飞, 张鹏, 彭帅. 智能纤维混凝土的力场损伤响应、监测与修复研究进展[J]. 材料导报, 2021, 35(19): 19081-19090.
[4] 张广泰, 王明阳, 耿天娇, 张文梅, 章金鹏. 高温-荷载耦合作用下废旧叠层轮胎隔震垫劣化机理分析[J]. 材料导报, 2020, 34(20): 20187-20192.
[5] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[6] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed