Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19081-19090    https://doi.org/10.11896/cldb.20060230
  无机非金属及其复合材料 |
智能纤维混凝土的力场损伤响应、监测与修复研究进展
马衍轩1,2, 于霞1, 徐亚茜1, 李梦瑶1, 赵飞1, 张鹏1, 彭帅3
1 青岛理工大学土木工程学院,青岛 266033
2 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京 100038
3 中国三峡建设管理有限公司乌东德工程建设部,昆明 650000
Research Progress on the Force Field Damage Response, Monitoring and Repair of Intelligent Fiber Concrete
MA Yanxuan1,2, YU Xia1, XU Yaqian1, LI Mengyao1, ZHAO Fei1, ZHANG Peng1, PENG Shuai3
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
3 Wudongde Project Construction Department, China Three Gorges Projects Development Co.,Ltd., Kunming 650000, China
下载:  全 文 ( PDF ) ( 7018KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,人们对智能响应材料的关注度与日俱增,建筑材料和建筑技术的迅速发展推动着混凝土向智能化方向发展,使损伤响应型混凝土成为智能化材料领域的研究热点。随着混凝土材料发展的高级阶段的到来,力场损伤智能响应型纤维混凝土的结构设计越来越巧妙,研究技术越来越先进,研究方法越来越优化,应用前景也越来越广阔,因此,对智能纤维混凝土力场损伤的响应设计、响应机理及其监测与修复进行研究十分必要。
当前混凝土性能参数的监测主要是采用嵌入式传感器和表面安装传感器的方法,这些方法具有灵敏度低、无法实时监测、操作程序复杂、校准耗时、成本高等缺点,且嵌入式传感器会对混凝土产生负面影响。与之相反的是,智能纤维混凝土中的智能组分(纤维)是混凝土本身的组成部分,纤维的加入会提高混凝土的强度,并且智能纤维混凝土具有自感知、自修复能力,能显著提高混凝土的安全性和耐久性。
在智能组分的种类方面,近年来主要对碳纤维、光纤维、中空玻璃纤维和各种纳米纤维的智能特性进行了研究;在智能性设计方面,近年来重点开展了力场损伤自感知设计、自修复设计的研究;在智能性监测方面,大量研究揭示了功率损耗、光波量变化、电阻率变化对于智能性的贡献;在智能响应机理研究方面,近年的研究主要阐明了各类智能纤维混凝土在微观和宏观尺度的响应机理。研究表明,力场损伤智能响应纤维混凝土具有很高的响应灵敏度,能够对弱应力等参数及时做出反应,对实现混凝土材料的智能实时无损检测具有重要意义。
本文综述了智能纤维混凝土力场损伤的响应、监测与修复的研究进展,总结了纤维混凝土的力场损伤响应设计及修复设计进展,介绍了力场损伤智能响应纤维混凝土的电阻率等电信号、光波量等光信号的监测研究进展,重点阐述了碳纤维、光纤维、玻璃纤维和纳米纤维智能纤维混凝土的力场损伤响应机理研究进展,并对现有力场损伤智能响应纤维混凝土进行了对比分析,指出了目前智能响应纤维混凝土存在的问题并对其发展前景进行了展望,这对未来的智能响应纤维混凝土力场损伤的研究具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马衍轩
于霞
徐亚茜
李梦瑶
赵飞
张鹏
彭帅
关键词:  纤维混凝土  力场损伤  智能响应  损伤机理  智能监测    
Abstract: In recent years, people have paid more and more attention to intelligently responsed materials. The rapid development of building materials and construction technology also promotes the development of concrete towards intelligent direction, which makes the research of damage-responsive concrete a hotspot in the field of intelligent materials. With the advent of the advanced stage of the development of concrete materials, the structural design of the force field damage intelligently response fiber concrete is becoming increasingly ingenious. Its research technology is more and more advanced, the research method is optimized rapidly, and the application prospect is quite broad. Therefore, it is necessary to study the response design, response mechanism, intelligent monitoring and intelligent repair of the intelligent response fiber concrete with force field damage.
At present, embedded sensors and surface mounted sensors are mainly used in concrete monitoring. They have disadvantages such as low sensitivity, no real-time monitoring, complicated operating procedures, time-consuming calibration, high cost, and embedded sensors will have a negative impact on concrete. On the contrary, the intelligent component (fiber) in intelligent fiber concrete is a component of the concrete itself, and the addition of fiber will increase the strength of the concrete. Moreover, intelligent fiber concrete has self-sensing and self-repairing capabilities, which can significantly improve the safety and durability of concrete.
In terms of the types of intelligent components, the intelligent characteristics of carbon fiber, optical fiber, hollow glass fiber, and various nano-fiber have been studied in recent years. In the aspect of intelligent design, in recent years, the focus has been carried out on the self-perceived design and self-repair design of force field damage. In terms of intelligence monitoring, a large number of studies have revealed the contribution of power loss, light wave changes, and resistivity changes to intelligence. In terms of the research of intelligent response mechanism, in recent years, the response mechanism of various types of intelligent fiber concrete in the micro scale and macro scale has been mainly clarified. Studies have shown that the intelligent response to force field damage fiber concrete has high response sensitivity, can respond to weak stress and other parameters in time, and is of great significance to the intelligent real-time non-destructive detection of concrete materials.
This paper reviews the research progress on the force field damage response, monitoring and repair of intelligent fiber concrete. The design progress of damage response design and repair design of fiber reinforced concrete are summarized. What is more, the research progress of monitoring electric signals and optical signals of smart fiber concrete in response to force field damage is introduced. This paper focuses on the research progress of the mechanism of damage response of carbon fiber, optical fiber, glass fiber and nano-fiber smart fiber concrete. And the existing force field damage intelligent response fiber concrete is compared and analyzed, in addition, the current problems of the intelligent response fiber concrete are pointed out and its development prospect is prospected. It is of guiding significance for the future research on force field damage intelligent response fiber concrete.
Key words:  fiber concrete    force field damage    intelligent response    damage mechanism    intelligent monitoring
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TU528  
基金资助: 青岛西海岸新区2020 年科技计划专项项目(2020-38);中国水利水电科学研究院流域水循环模拟与调控国家重点实验室开放研究基金项目(IWHR-SKL-202106);青岛理工大学滨海人居环境学术创新中心开放基金项目(2020-034);国家自然科学基金项目(51408330);山东省优秀中青年科学家科研奖励基金项目(BS2014CL031)
通讯作者:  yxma@qut.edu.cn   
作者简介:  马衍轩,男,1985年11月生,工学博士,副教授,硕士生导师,现任青岛理工大学土木工程学院材料科学与工程系主任、材料科学与工程专业建设负责人等职务,国际防护工程学会(IAPS)会员,中国地震学会基础设施防震减灾青年委员会委员,中国硅酸盐学会高级会员,中国化工学会会员,山东省混凝土与水泥制品专家委员会委员,山东省材料学会会员,青岛市专业技术评审专家,Polymer Reviews等JCR一区TOP国际期刊审稿专家。主要从事智能自修复体系、抗爆抗冲击防护体系等防灾减灾建筑及装备材料与结构的全寿命周期多尺度一体化设计研究。主持国家自然科学基金、山东省优秀中青年科学家科研奖励基金等多项国家、省部级科研项目。已公开发表Materials & Designv<、i>等SCI、EI收录学术论文30余篇,申请PCT专利6项,申请国家发明专利35项,其中已授权28项。
引用本文:    
马衍轩, 于霞, 徐亚茜, 李梦瑶, 赵飞, 张鹏, 彭帅. 智能纤维混凝土的力场损伤响应、监测与修复研究进展[J]. 材料导报, 2021, 35(19): 19081-19090.
MA Yanxuan, YU Xia, XU Yaqian, LI Mengyao, ZHAO Fei, ZHANG Peng, PENG Shuai. Research Progress on the Force Field Damage Response, Monitoring and Repair of Intelligent Fiber Concrete. Materials Reports, 2021, 35(19): 19081-19090.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060230  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19081
1 Demircilioğlu E, Teomete E, Schlangen E, et al. Construction and Building Materials, 2019, 224, 420.
2 Villalba S, Casas J R. Mechanical Systems and Signal Processing, 2013, 39(1-2), 441.
3 Lee S Y, Le H V, Kim D J. Construction and Building Materials, 2019, 220, 149.
4 Mohamad H, Soga K, Bennett P J, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8), 957.
5 Cheung L L K, Soga K, Bennett P J, et al. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2010, 163(3), 119.
6 Liu Q, Gao R, Tam V W Y, et al. Construction and Building Materials, 2018, 167, 338.
7 Downey A, Alessandro A D, Baquera M, et al. Engineering Structures, 2017, 148, 924.
8 Lai Y, Liu Y, Ma D. Cold Regions Science and Technology, 2014, 103, 57.
9 Yue C L. Influence Carbon Fiber on Mechanical Properties of Concrete. Master's Thesis, Chang'an University, China, 2016(in Chinese).
岳彩兰.碳纤维对混凝土性能的影响.硕士学位论文,长安大学,2016.
10 Van Tittelboom K, De Belie N, Lehmann F, et al. Construction and Building Materials, 2012, 28(1), 333.
11 Sun D S, Chen Y Y, Wang A G, et al. Materials Reports, 2014, 28(11), 132(in Chinese).
孙道胜, 陈远远, 王爱国, 等.材料导报, 2014, 28(11), 132.
12 Han B G, Yu X, Ou J P. Self-Sensing Concrete in Smart Structures, Butterworth-Heinemann Press, UK, 2015.
13 Dry C M. In: Conference Record of SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, Las Vegas, 2016, pp.10.
14 Chen M, Gao P, Geng F, et al. Construction and Building Materials, 2017, 142, 320.
15 Konsta-Gdoutos M S, Aza C A. Cement and Concrete Composites, 2014, 53, 162.
16 Ding S, Ruan Y, Yu X, et al. Construction and Building Materials, 2019, 201, 127.
17 Han B, Wang Y, Dong S, et al. Journal of Intelligent Material Systems and Structures, 2015, 26(11), 1303.
18 Ding T, Liu Y. Advanced Materials Research, 2014, 960, 14.
19 Zhang X, Fujiwara S, Fujii M. International Journal of Thermophysics, 2000, 21(4), 965.
20 Wang Y Z, Xu Y Z, Sun Y. Advanced Materials Research, 2012, 461, 246.
21 Sassani A, Ceylan H, Kim S, et al. Construction and Building Materials, 2017, 152, 168.
22 Liu S R, Yang J J, Wang Z Z, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(10), 2851(in Chinese).
刘素瑞, 杨久俊, 王战忠, 等. 硅酸盐通报, 2015, 34(10), 2851.
23 Qiu J F, Sun G F, Wang Y K, et al. New Building Materials, 2015,42(12), 37(in Chinese).
邱军付, 孙桂芳, 王永魁, 等. 新型建筑材料, 2015, 42(12), 37.
24 Hay R, Ostertag C P. Corrosion Science, 2019, 153, 213.
25 Hay R, Ostertag C P. Cement and Concrete Composites, 2020, 110, 103573.
26 Zhang W, François R, Cai Y, et al. Construction and Building Mate-rials, 2020, 253, 119165.
27 Payakaniti P, Pinitsoonthorn S, Thongbai P, et al. Materials Today: Proceedings, 2018, 5(6, Part 1), 14017.
28 Li F, Du Y, Zhang W, et al. Optical Engineering, 2013, 52(1), 14403.
29 Banshiwal J K, Tripathi D N. In: Functional Materials, Namibia, 2019, pp. 1.
30 Yang H, Liang D K, Tao B Q, et al. Acta Materiae Compositae Sinica, 2002(1), 122(in Chinese).
杨红, 梁大开, 陶宝祺, 等. 复合材料学报, 2002(1), 122.
31 Mauldin T C, Kessler M R. International Materials Reviews, 2010, 55(6), 317.
32 Zhang P, Feng J J, Chen W, et al. Materials Reports A: Review Papers, 2018, 32(10), 3375(in Chinese).
张鹏, 冯竟竟, 陈伟, 等. 材料导报: 综述篇, 2018, 32(10), 3375.
33 Tan P S, Zhang M Q, Bhattacharyya D. In: IOP Conference Series: Materials Science and Engineering. Auckland, 2009, pp. 12017.
34 Hamilton A R, Sottos N R, White S R. Advanced Materials, 2010, 22(45), 5159.
35 Dry C, Nancy S. In: Conference of Adaptive Materials. New Mexico, 1993.
36 Lv Z, Chen H S. Journal of the Chinese Ceramic Society, 2014, 42(2), 156(in Chinese).
吕忠, 陈惠苏.硅酸盐学报, 2014, 42(2), 156.
37 Vipulanandan C, Amani N. Construction and Building Materials, 2018, 175, 519.
38 García-Macías E, Castro-Triguero R, Sáez A, et al. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 396.
39 Li H, Xiao H G, Ou J P. Cement and Concrete Composites, 2006, 28, 824.
40 Li H, Ou J P. Engineering Mechanics, 2007, 24(Sup. Ⅱ), 45(in Chinese).
李惠, 欧进萍.工程力学, 2007, 24(增刊Ⅱ), 45.
41 Huang S, Lin W, Tsai M, et al. Sensors and Actuators A: Physical, 2007, 135(2), 570.
42 Yang D Z. Intelligent Materials and System, Tianjin University Press, China, 2000(in Chinese).
杨大智. 智能材料与智能系统, 天津大学出版社, 2000.
43 Liang D K, Yang H. Piezo Electrics and Acoustooptics, 2002(4), 261(in Chinese).
梁大开, 杨红. 压电与声光, 2002(4), 261.
44 Yang H, Tao B, Qiu H, et al. Optical Measurement and Nondestructive Testing: Techniques and Applications, 2000, 4221, 264.
45 Yang H. Research on self-diagnose and self-repair in smart structures by hollow-center optical fiber. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2001(in Chinese).
杨红. 空心光纤用于智能结构自诊断、自修复的研究.博士学位论文,南京航空航天大学, 2001.
46 Hou J P, Gai S L, Li P, et al. Semiconductor Optoelectronics, 2010, 31(5), 747(in Chinese).
侯建平, 盖双龙, 李鹏, 等.半导体光电, 2010, 31(5), 747.
47 Zhang F E, Yao L N. Journal of Functional Materials and Devices, 2003 (1), 91(in Chinese).
张妃二, 姚立宁. 功能材料与器件学报, 2003 (1), 91.
48 Jiang D S, Liang L, Zhou X F, et al. Bulletin of the Chinese Ceramic Society, 2003(3), 78(in Chinese).
姜德生, 梁磊, 周雪芳, 等. 硅酸盐通报, 2003(3), 78.
49 Wang Z F. Study on fiber bragggarting sensing theory and key technology for birdges and tunnels engineering safety monitoring. Ph. D. Thesis, Shandong University, China, 2014(in Chinese).
王正方. 桥隧工程安全监测的光纤光栅传感理论及关键技术研究.博士学位论文,山东大学, 2014.
50 Zhang Y F. Experimental study on stress and damage self-induction of carbon-steel fiber smart concrete. Master's Thesis, Taiyuan University of Technology, China, 2019(in Chinese).
张一帆. 碳—钢纤维机敏混凝土应力及损伤自感应试验研究. 硕士学位论文,太原理工大学, 2019.
51 Wen S, Chung D D L. Cement and Concrete Research,2001,31(4),665.
52 Chen B, Wu K R, Yao W. Journal of Building Materials, 2003(3), 312(in Chinese).
陈兵,吴科如,姚武.建筑材料学报, 2003(3), 312.
53 Wen S, Chung D D L. Cement and Concrete Research, 2001, 31(2), 297.
54 Wang X F, Wang Y L, Jin Z H. Journal of the Chinese Ceramic Society, 1998(2), 127(in Chinese).
王秀峰, 王永兰, 金志浩. 硅酸盐学报, 1998(2), 127.
55 Chen B, Liu J, Wu K. Cement and Concrete Research, 2005, 35(11), 2183.
56 Yang H, Liang D K, Tao B Q, et al. Journal of Functional Materials, 2001, 32(4), 419(in Chinese).
杨红, 梁大开, 陶宝祺, 等.功能材料, 2001, 32(4), 419.
57 Hou S, Cai C S S, Ou J P. In: Proceedings of SPIE-The International Society for Optical Engineering. USA, 2009, pp. 7493.
58 He J P. Full-scale distributed monitoring technology of optical fiber brillouin and applications in civil engineering. Ph. D. Thesis, Harbin Institute of Technology, China, 2010(in Chinese).
何建平. 全尺度光纤布里渊分布式监测技术及其在土木工程的应用. 博士学位论文,哈尔滨工业大学, 2010.
59 Dry C. Bioinspiration, Biomimetics, and Bioreplication, 2015, 9429(7), 1.
60 Bleay S M, Loader C B, Hawyes V J, et al. Composites Part A: Applied Science and Manufacturing, 2001, 32(12), 1767.
61 Kuang Y C, Ou J P. Journal of Functional Materials, 2007,38, 3678(in Chinese).
匡亚川, 欧进萍. 功能材料, 2007, 38, 3678.
62 Jang B Z, Lieu Y K. Journal of Applied Polymer Science, 2003, 30(9), 3925.
63 Trask R S, Bond I P. Smart Materials and Structures, 2006, 15(15), 704.
64 Shui X, Chung D D L. Journal of Materials Science, 2000, 35(7), 1773.
65 García-Macías E, D'Alessandro A, Castro-Triguero R, et al. Composite Structures, 2017, 163, 195.
66 García-Macías E, D'Alessandro A, Castro-Triguero R, et al. Composites Part B: Engineering, 2017, 108, 451.
67 Ubertini F, Laflamme S, D'Alessandro A. In: Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering. UK, 2016, pp. 23.
68 Iasa E G I, Alessandrob A D, Castro-Trigueroc R, et al. Accepted Manuscript, 2017, 163, 195.
[1] 张广泰, 王明阳, 耿天娇, 张文梅, 章金鹏. 高温-荷载耦合作用下废旧叠层轮胎隔震垫劣化机理分析[J]. 材料导报, 2020, 34(20): 20187-20192.
[2] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[3] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[4] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[5] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[6] 刘鑫, 杨鼎宜, 刘廉, 吕锦飞. 热-力耦合作用下PVA纤维混凝土力学性能及其声发射响应[J]. 材料导报, 2018, 32(18): 3135-3141.
[7] 江世永,陶 帅,姚未来,吴世娟,蔡 涛. 高韧性纤维混凝土单轴受压性能及尺寸效应[J]. 《材料导报》期刊社, 2017, 31(24): 161-168.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed