Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3535-3540    https://doi.org/10.11896/j.issn.1005-023X.2018.20.008
  无机非金属及其复合材料 |
聚乙烯纤维制备超高延性水泥基复合材料的试验研究
王义超1, 侯梦君1, 余江滔1,2, 徐世烺3, 俞可权1, 张志刚4
1 同济大学土木工程学院,上海 200092;
2 上海市工程结构安全重点实验室,上海 200032;
3 浙江大学建筑工程学院,杭州310058;
4 重庆大学土木工程学院,重庆 400044;
Experimental Study on Mechanical Properties of Ultra-High Ductile Cementitious Composites
WANG Yichao1, HOU Mengjun1, YU Jiangtao1,2, XU Shilang3, YU Kequan1,
ZHANG Zhigang4
1 College of Civil Engineering, Tongji University, Shanghai 200092;
2 Shanghai Key Laboratory of Engineering Structure Safety, Shanghai 200032;
3 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058;
4 School of Civil Engineering, Chongqing University, Chongqing 400044;
下载:  全 文 ( PDF ) ( 1937KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提升高性能水泥基复合材料的拉伸能力,研制了以短切超高分子量聚乙烯纤维作为增强材料,以水泥砂浆为基体的超高延性水泥基复合材料(Ultra-high ductility cementitious composites, UHDCC)。本研究通过直接拉伸、单轴抗压及三点弯曲梁试验研究了UHDCC的基本力学性能。直拉试验表明,UHDCC具有优异的应变硬化和多重裂缝开裂性能。在极限状态下,UHDCC的裂纹间距小于2 mm,最大平均裂纹宽度小于200 μm;材料的平均抗拉强度为7.28 MPa,峰值强度处的平均拉伸应变达到12%,最大拉伸应变达到13%以上,具有超高的拉伸延性。轴压试验表明,超过峰值强度后,UHDCC在80%和60%的抗压峰值强度处的应变分别约为2.8%和7.0%,说明材料具有强大的受压变形能力。材料的弯曲韧性指数I10、I30、I50、I60分别为10.1、33.1、54.4、65.6,表明UHDCC具有优异的弯曲变形能力。此外,三点弯曲缺口梁和单裂缝试验结果表明,UHDCC的超高延性源于聚乙烯纤维超高的裂缝桥接能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王义超
侯梦君
余江滔
徐世烺
俞可权
张志刚
关键词:  纤维混凝土  拉伸性能  弯曲韧性  应变硬化  超高延性水泥基复合材料    
Abstract: To further enhance the tensile capacity of high performance cementitious composites, a new kind of cementitious material ultra-high ductility cementitious composites (UHDCC) based on cement mortar, is developed with the help of ultra high molecular weight polyethylene (PE) fibers. Uniaxial tension test, compression test and three-point bending beam test were conducted to explore the basic mechanical properties of UHDCC in this paper. The uniaxial tension test results indicated that UHDCC exhibited outstanding strain hardening behavior and the multiple cracking pattern. At the ultimate state, the crack spacing of UHDCC was generally less than 2 mm with the crack widths less than 200 μm. The average tensile strength of UHDCC was 7.28 MPa, while the average tensile strain capacity reached 12% (the maximal one more than 13%). The compressive test results showed that the compressive strains corresponding to the 80% and 60% of the peak compressive strength in post-peak branch reached about 2.8% and 7.0%, exhibiting the superior compressive ductility. The flexural toughness index I10, I30, I50 and I60 of UHDCC were 10.1, 33.1, 54.4 and 65.6 respectively, indicating the ultra-high deformability of UHDCC.Moreover, the 3-point bending notched beam test and single crack tension test results demonstrated that the high ductility of UHDCC originates from the ultra-high crack bridging capacity.
Key words:  fiber reinforced concrete    tensile capacity    flexural toughness    strain hardening    ultra-high ductility cementitious composites
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(51478362)
作者简介:  王义超:男,1989年生,博士研究生,主要研究方向为超高延性水泥基复合材料 E-mail:wangyichao@tongji.edu.cn 余江滔:通信作者,男,1975年生,博士,副教授,博士研究生导师,主要研究方向为高性能纤维混凝土 E-mail:yujiangtao@tongji.edu.cn
引用本文:    
王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
WANG Yichao, HOU Mengjun, YU Jiangtao, XU Shilang, YU Kequan,
ZHANG Zhigang. Experimental Study on Mechanical Properties of Ultra-High Ductile Cementitious Composites. Materials Reports, 2018, 32(20): 3535-3540.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.008  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3535
1 Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics,1992,118(11):2246.
2 Xu S L, Li H D. A review on the development of research and application of ultra high toughness cementitious composites [J]. China Civil Engineering Journal,2008,41(6):45(in Chinese).
徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45.
3 Li V C, Mishra D K, Wu H C. Matrix design for pseudo-strain-hardening fiber reinforced cementitious composites [J]. Materials and Structures,1995,28(10):586.
4 中华人民共和国住房和城乡建设部.GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:14.
5 Japan Society of Civil Engineers Concrete Committee. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks [S]. Tokyo: Japan Society of Civil Engineers,2008.
6 Fischer G, Stang H, Dick-Nielsen L. Initiation and development of cracking in ECC materials: Experimental observations and modeling [C]∥The 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Catania,2007:1517.
7 中华人民共和国国家发展和改革委员会.DL/T 5332-2005水工混凝土断裂试验规程[S].北京:中国电力出版社,2005:9.
8 Lepech M D, Li V C. Application of ECC for bridge deck link slabs [J]. Materials and Structures,2009,42(9):1185.
9 Wang S X, Li V C. Engineered cementitious composites with high-volume fly ash [J]. ACI Materials Journal,2007,104(3):233.
10 Yu J T, Lin J, Zhang Z, et al. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures [J]. Construction and Building Materials,2015,99:82.
11 Ranade R, Li V C, Stults M D, et al. Composite properties of high-strength, high-ductility concrete [J]. ACI Materials Journal,2013,110(4):413.
12 Li H D. Experimental research on ultra high toughness cementitious composites [D]. Dalian: Dalian University of Technology,2008(in Chinese).
李贺东.超高韧性水泥基复合材料试验研究[D].大连:大连理工大学,2008.
13 American Society for Testing Material C1018-97. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete using beam with third-point loading [S]. New York. ASTM International,1992.
14 Deng Z C, Zhang P F, Xue H Q. Flexural toughness of cellulose and hybrid fiber reinforced concrete beams [J]. Journal of Beijing University of Technology,2008,34(8):852(in Chinese).
邓宗才,张鹏飞,薛会青.纤维素纤维及混杂纤维混凝土的弯曲韧性[J].北京工业大学学报,2008,34(8):852.
15 Kanda T, Li V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites [J]. JCI Concrete Research and Technology Japan Concrete Institute,1998,9(2):19.
16 Yang E H, Wang S X, Yang Y Z, et al. Fiber-bridging constitutive law of engineered cementitious composites [J]. Journal of Advanced Concrete Technology,2008,6(1):181.
[1] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[2] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[3] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[4] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[5] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[6] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[7] 刘鑫, 杨鼎宜, 刘廉, 吕锦飞. 热-力耦合作用下PVA纤维混凝土力学性能及其声发射响应[J]. 材料导报, 2018, 32(18): 3135-3141.
[8] 贾建刚, 高昌琦, 刘第强, 季根顺, 薛向军, 郭铁明, 郝相忠. 表面镀Ni碳纤维增强Cu基复合材料的制备和表征[J]. 《材料导报》期刊社, 2018, 32(14): 2462-2466.
[9] 江世永,陶 帅,姚未来,吴世娟,蔡 涛. 高韧性纤维混凝土单轴受压性能及尺寸效应[J]. 《材料导报》期刊社, 2017, 31(24): 161-168.
[10] 刘红彪, 张强, 郭畅, 张鹏. 超高韧性水泥基复合材料多缝开裂特性及其自生愈合*[J]. CLDB, 2017, 31(23): 145-149.
[11] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[12] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[13] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed