Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 288-294    https://doi.org/10.11896/j.issn.1005-023X.2018.02.026
  物理   材料研究 |材料 |
高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究
梁宁慧1,2,杨鹏1,2,刘新荣1,2,钟杨1,2,郭哲奇1,2
1 重庆大学土木工程学院,重庆 400045
2 山地城镇建设与新技术教育部重点实验室,重庆 400045
A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate
Ninghui LIANG1,2,Peng YANG1,2,Xinrong LIU1,2,Yang ZHONG1,2,Zheqi GUO1,2
1 College of Civil Engineering, Chongqing University, Chongqing 400045
2 Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing 400045
下载:  全 文 ( PDF ) ( 3824KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用Φ74 mm的分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)试验装置,对两种尺寸聚丙烯细纤维和一种尺寸聚丙烯粗纤维单掺及混掺的混凝土试件进行冲击压缩试验,对比分析粗、细纤维及不同纤维掺量比的多尺寸纤维混凝土试件在五种不同应变率下的动态压缩强度、动态压缩变形、动态压缩韧性和破坏特征,研究聚丙烯纤维混凝土的动态压缩力学性能。结果表明:随应变率的增加,素混凝土及纤维混凝土的动态压缩强度、动态压缩变形和动态压缩韧性表现出显著的应变率效应;在试验应变率范围内,粗聚丙烯纤维混凝土的动态抗压强度最高,相对素混凝土增幅为132.36%213.85%;多尺寸聚丙烯纤维混凝土的动态强度增长因子与素混凝土基本一致;掺入多尺寸聚丙烯纤维可有效增大混凝土在不同应变率下的动态峰值应变和动态极限应变;多尺寸聚丙烯纤维混凝土的动态极限韧性较高,其中细聚丙烯纤维含量为1.2 kg/m 3时混凝土动态极限韧性最高,增幅为121.11%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁宁慧
杨鹏
刘新荣
钟杨
郭哲奇
关键词:  聚丙烯纤维混凝土  SHPB  多尺寸  应变率效应  动力特性    
Abstract: 

Impacting compression tests of fine polypropylene fibers in two sizes and thick polypropylene fibers in one size, single-doped and mix-doped with concrete were conducted by 74 mm diameter split Hopkinson pressure bar (SHPB). Multi-size polypropylene fiber concrete specimens with coarse, fine fiber and different fiber content at 5 different strain rates under dynamic compressive strength, dynamic compressive deformation, dynamic compressive toughness and failure forms were compared and analyzed. The dynamic mechanical properties of polypropylene fiber were studied. The results showed that the dynamic compressive strength, dynamic compression deformation and dynamic compression toughness of concrete and fiber concrete show a significant strain rate effect with the increase of strain rate. In the range of strain rate, the dynamic compressive strength of coarse polypropylene fiber reinforced concrete is the highest, and in comparing with that of the plain concrete increased by 132.36%—213.85%. The dynamic compressive strength growth factor of multi-scale polypropylene fiber concrete is basically the same with that of plain concrete. The dynamic peak strain and ultimate strain of concrete under different strain rates can be increased effectively by adding polypropylene fiber. The dynamic ultimate toughness of multi-scale polypropylene fiber concrete is higher than that of polypropylene fiber concrete, and the dynamic ultimate toughness is the highest when the content of fine polypropylene fiber is 1.2 kg/m 3, and the growth rate is up to 121.11%.

Key words:  polypropylene fiber reinforced concrete    SHPB    multi-size    strain rate effect    dynamic characteristics
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TU37  
基金资助: 国家自然科学基金(41372356);重庆市基础与前沿研究计划项目(cstc2013jcyjA30005);重庆市研究生科研创新项目资助(CYS16005)
引用本文:    
梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate. Materials Reports, 2018, 32(2): 288-294.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.026  或          http://www.mater-rep.com/CN/Y2018/V32/I2/288
Fiber
number
Diameter
mm
Length
mm
Tensile strength
MPa
Elastic modulus
GPa
Elongation
at break/%
Density
g/cm3
Recommended
dosage/(kg/m3)
F1 0.026 19 641 4.5 40 0.91 0.9
F2 0.1 19 322 4.9 15 0.91 0.9
C1 0.8 50 706 7.4 10 0.95 6.0
表1  聚丙烯纤维的物理力学指标
Power
level
Cement
kg/m3
Sand
kg/m3
Stone
kg/m3
Water
kg/m3
Water plastic
ratio
Gravel diameter
mm
Sand
rate/%
Water-reducing
agent/(kg/m3)
C30 380 701 1 144 175 0.461 5—10 38 3.8
表2  混凝土配合比
Test piece
number
Fiber type Fiber content
%
Average static
compressive
strength/MPa
A0 Nothing 0 29.6
A1 F1 0.1 30.3
A2 F2 0.1 30.2
A3 C1 0.6 35.6
A4 F1+F2+C1 0.05+0.05+0.5 43.3
A5 F1+F2+C1 0.06+0.06+0.48 48.4
表3  试件编号及平均静力抗压强度
图1  Φ74 mm SHPB装置
图2  加工好的部分试件
Material Impact
load
MPa
Average
strain
rate/s-1
Dynamic
compressive
strength/MPa
Dynamic strength
enhancement
factor
Peak
strain
10-3
Ultimate
strain
10-3
Peak
toughness
kJ·m-3
Ultimate
toughness
kJ·m-3
A0 0.3 34 45.13 1.525 3.79 17.11 112.1 468.8
0.35 63 48.2 1.628 4.276 12.58 143.2 419.7
0.4 74 50.2 1.696 4.173 13.57 153.3 484.1
0.45 89 52.23 1.765 4.824 14.35 188.1 540.3
0.5 113 55.42 1.872 3.959 16.3 163.9 657.5
A1 0.3 30 47.27 1.56 6.445 14.52 222 486.4
0.35 58 54.02 1.783 5.982 15.77 219.2 571.1
0.4 83 53.65 1.771 7.424 16.86 300 646
0.45 95 53.4 1.762 7.386 19.86 255.9 661.7
0.5 104 60.75 2.005 8.8 19.83 408.6 834.9
A2 0.3 32 47.84 1.584 5.046 14.39 162.4 427.9
0.35 68 51.06 1.691 5.956 16.48 230 546.7
0.4 85 55.91 1.851 5.69 16.26 230.1 610.5
0.45 96 57.45 1.902 6.638 18.92 304 789.3
0.5 103 60.92 2.017 8.887 18.69 433.7 809.2
A3 0.3 28 68.78 1.932 5.405 16.49 252 759.3
0.35 61 70.72 1.987 4.067 14.46 205 624.3
0.4 78 75.32 2.116 5.383 18.13 302.1 892.9
0.45 96 85.91 2.413 8.268 18.59 516.5 1 119.5
0.5 108 92.9 2.61 5.132 17.53 338.2 998.1
A4 0.3 34 58.01 1.339 2.758 11.88 99.5 414.4
0.35 73 62.38 1.441 3.035 13.93 139 516.7
0.4 87 63.66 1.47 6.031 23.5 315.6 936.8
0.45 93 72.26 1.669 7.415 24.11 424.6 1 150.6
0.5 108 74.1 1.711 2.944 20.21 164.5 941.6
A5 0.3 36 60.16 1.243 1.768 17.16 74.4 550
0.35 69 73.83 1.525 3.626 18.69 190.6 780.8
0.4 76 72.02 1.488 6.66 21.1 364.5 1 070.4
0.45 87 78.09 1.613 8.14 22.28 446 1 066.4
0.5 102 90.97 1.88 8.225 19.99 534.8 1 149.4
表4  聚丙烯纤维混凝土SHPB试验结果
图3  不同应变率下素混凝土和纤维混凝土的应力-应变曲线
图4  不同应变率下MPFC的动态抗压强度
图5  不同应变率下MPFC的动态强度增长因子
图6  不同应变率下MPFC的动态峰值应变
图7  不同应变率下MPFC的动态极限应变
图8  不同应变率下MPFC的动态峰值韧性
图9  不同应变率下MPFC的动态极限韧性
图10  素混凝土和纤维混凝土典型破坏形态
1 Tang T, Malvern L, Jenkins D . Rate effects in uniaxial dynamic compression of concrete[J]. Journal of Engineering Mechanics, 1992,118(1):108.
2 Ross C A, Tedesco J W, Kuennen S T . Effects of strain-rate on concrete strength[J]. ACI Materials Journal, 1995,92(1):37.
3 Jitsu K, Shirai K, Ito C, et al. Effects of strain rate on concrete strength subjected to impact load-dynamic compressive strength test by Split Hopkinson pressure bar method [C]∥5th International Conference on Structures Under Shock and Impact.Greece, 1998.
4 Jiang Guoping, Huan Shi, Jiao Chujie , et al. Dynamic performances of polypropylene fiber reinforced concrete based on SHPB experiment[J]. Journal of Sichuan University (Engineering Science Edition), 2009,41(5):82(in Chinese).
5 蒋国平, 浣石, 焦楚杰 , 等. 基于SHPB试验的聚丙烯纤维增强混凝土动态力学性能研究[J]. 四川大学学报(工程科学版), 2009,41(5):82.
6 Zhang Yuning, Fang Qin, Hou Xiaofeng, et al. SHPB test research on dynamic mechanical properties of polypropylene fiber reinforced concrete with high fiber volume[J].Concrete, 2006(9):54(in Chinese).
7 张育宁, 方秦, 侯晓峰 , 等. 高掺量聚丙烯纤维混凝土动力性能的SHPB试验研究[J].混凝土, 2006(9):54.
8 Hu Jinsheng, Zhou Zaosheng, Tang Degao , et al. Study of SHPB compression experiment for polypropylene fiber reinforced concrete[J]. China Civil Engineering Journal, 2004,37(6):12(in Chinese).
9 胡金生, 周早生, 唐德高 , 等. 聚丙烯纤维增强混凝土分离式Hopkinson压杆压缩试验研究[J]. 土木工程学报, 2004,37(6):12.
10 Zhang Hua, Liu Yang, Sun Hao , et al. Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading[J]. Construction and Building Materials, 2016,111(2):30.
11 Yan Shaohua, Guo Zhikun, Chen Li . Dynamic behaviors of polypropylene fiber reinforced lightweight aggregate concrete by SHPB tests[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008,9(2):156(in Chinese).
12 严少华, 郭志昆, 陈立 . 聚丙烯纤维增强轻骨料混凝土SHPB试验[J]. 解放军理工大学学报(自然科学版), 2008,9(2):156.
13 Li Weimin, Xu Jinyu . Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading[J]. Materials Science and Engineering A, 2009,505(1-2):178.
14 Wang Pu, Huang Zhen, Zhou Dai , et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J]. Journal of Vibration and Shock, 2012,31(12):14(in Chinese).
15 王璞, 黄真, 周岱 , 等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击, 2012,31(12):14.
16 11 Li Zhi, Lu Zhean, Chen Meng, et al. Impact compression experiment of hybrid fiber reinforced concrete by using SHPB technique[J].Concrete, 2011(4):20(in Chinese).
17 李智, 卢哲安, 陈猛 , 等. 混杂纤维混凝土冲击压缩性能SHPB试验研究[J].混凝土, 2011(4):20.
18 Huang Guodong, Ma Qinyong . Experimental study and analysis of layer hybrid fiber reinforced concrete mechanical performance[J]. Chinese Journal of Underground Space and Engineering, 2010,6(2):329(in Chinese).
19 黄国栋, 马芹永 . 混杂纤维混凝土力学性能试验研究与分析[J]. 地下空间与工程学报, 2010,6(2):329.
20 Zhu Haitang, Gao Danying, Wang Zhanqiao . Experimental study on fracture properties of hybrid fiber Reinforced high-strength concrete[J]. Journal of Building Structures, 2010,31(1):41(in Chinese).
21 朱海堂, 高丹盈, 王占桥 . 混杂纤维高强混凝土断裂性能试验研究[J]. 建筑结构学报, 2010,31(1):41.
22 Almusallam T, Ibrahim S M, Al Salloum Y , et al. Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete[J]. Cement & Concrete Composites, 2016,74(11):201.
23 Liang Ninghui, Liu Xinrong, Sun Ji . Experimental study of crack resistance for multi-scale polypropylene fiber reinforced concrete[J]. Journal of China Coal Society, 2012,37(8):1304(in Chinese).
24 梁宁慧, 刘新荣, 孙霁 . 多尺度聚丙烯纤维混凝土抗裂性能的试验研究[J]. 煤炭学报, 2012,37(8):1304.
25 Song Li, Hu Shisheng . Two wave and three wave method in SHPB data processing[J]. Exlposion and Shock Waves, 2005,25(1):368(in Chinese).
26 宋力, 胡时胜 . SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005,25(1):368.
[1] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[2] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed