Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 295-300    https://doi.org/10.11896/j.issn.1005-023X.2018.02.027
  物理   材料研究 |材料 |
复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究
刘子铭1,陈华鑫1,熊锐1,王泳丹2,王小雯1
1 长安大学材料科学与工程学院,西安 710061
2 长安大学公路学院,西安 710064
Experimental Investigation on Properties of Steel Wool Fiber/Brucite Fiber Reinforced Asphalt Mortar
Ziming LIU1,Huaxin CHEN1,Rui XIONG1,Yongdan WANG2,Xiaowen WANG1
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710061;
2 School of Highway, Chang’an University, Xi’an 710064;
下载:  全 文 ( PDF ) ( 4901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过改变纤维总掺量和两种纤维的体积比,采用延度试验、锥入度试验、布氏旋转粘度试验和动态剪切流变试验研究了混杂纤维沥青胶浆的低温延展性能、抗剪切性能、粘度特性及高温流变特性,同时借助扫描电镜(SEM)对其试样断面进行观察分析。结果表明:沥青胶浆的低温延展性随纤维掺量的增大而降低;在6%纤维总掺量范围内,随着纤维掺量的增大粘度逐渐增大,且增大的幅度减小;当钢丝绒纤维与水镁石纤维体积比为6/4时,沥青胶浆的车辙因子(G */sinδ)、抗剪强度达到最佳值;将两种纤维混杂掺入沥青胶浆中,充分分散,其与沥青粘结良好,发挥了增粘和桥接作用,提高了沥青胶浆的整体稳定性和抵抗永久变形的能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子铭
陈华鑫
熊锐
王泳丹
王小雯
关键词:  道路工程  钢丝绒纤维  水镁石纤维  沥青胶浆    
Abstract: 

In order to investigate how fibers affect asphalt binder in low-temperature ductility, shear resistance, apparent viscosity and high-temperature rheology, ductility test, cone penetration test, Brookfield viscosity test and dynamic shear rheology test were applied and total adding mass and volume ratio of two type of fibers were considered. And cross sections morphology of samples were observed by scanning electronic microscope. Results showed that increasing addition of fibers could reduced low-temperature ductility. Viscosity was improved by increasing fiber addition but improvement seemed slower when adding proportion was close to 6%; while shear resistance and rut factor (G */sinδ) performed better when volume ratio of steel wool and brucite fiber was 6/4.Therefore,rutting resistance can be improved by viscosity growth and bridging induced by well dispersion and interaction between binder and fibers.

Key words:  road engineering    steel wool fiber    brucite fiber    asphalt mortar
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  U414.1  
基金资助: 青海省重大科技专项(2014-GX-A2A);中央高校基本科研业务费专项资金(310831161010)
引用本文:    
刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
Ziming LIU,Huaxin CHEN,Rui XIONG,Yongdan WANG,Xiaowen WANG. Experimental Investigation on Properties of Steel Wool Fiber/Brucite Fiber Reinforced Asphalt Mortar. Materials Reports, 2018, 32(2): 295-300.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.027  或          https://www.mater-rep.com/CN/Y2018/V32/I2/295
Index Test method Unit Technical standard Measured value
Penetration(25 ℃,100 g,5 s) T0604 0.1 mm 80100 87
Ductility(15 ℃,5 cm/min) T0605 cm ≥100 >100
Softening point,TR&B T0606 4252 45.6
Solubility T0607 g ≥99 99.8
Flash point (COC) T0611 ≥230 278
RTFOT
(165 ℃,85 min)
Residual penetration
ratio
T0604 % ≥60 66.7
Ductility
(10 ℃,5 cm/min)
T0605 cm 44
Softening point (TR&B) T0606 50
Table 1  Performance of KLM A-90# asphalt
Component SiO2 MgO Al2O3 Fe2O3 FeO CaO Na2O K2O H2O
Content/% 1—3 61—65 0.27 0.6—1 2—6 0.14 0.06 0.17 28.1
表2  水镁石纤维化学组成
图1  水镁石纤维微观形貌
图2  水镁石纤维外观形貌
图3  钢丝绒纤维微观形貌
图4  钢丝绒纤维外观形貌
图5  锥入度实验
图6  Brookfield旋转粘度仪
图7  动态剪切流变仪测试原理
图8  10 ℃延度实验结果
图9  延度试样
图10  抗剪强度随纤维掺量的变化结果
图11  不同纤维掺量下纤维沥青胶浆粘度实验结果
图12  不同纤维掺量下温度对纤维沥青胶浆G*/sinδ的影响
图13  频率对纤维沥青胶浆G*/sinδ的影响
图14  纤维沥青胶浆断面微观形貌
1 Qin Xiao,Shen Aiqin,Guo Yinchuan.Experimental study on road performance of basalt fiber reinforced bitumen mastics[J].Journal of Building Materials, 2016(4):659(in Chinese).
2 覃潇, 申爱琴, 郭寅川 . 玄武岩纤维沥青胶浆性能试验研究[J]. 建筑材料学报, 2016(4):659.
3 Apostolidis P, Liu X, Scarpas A , et al. Advanced evaluation of asphalt mortar for induction healing purposes[J]. Construction and Building Materials, 2016,126:9.
4 García Alvaro, Norambuena-Contreras J, Manfred N . Experimental evaluation of dense asphalt concrete properties for induction heating purposes[J]. Construction and Building Materials, 2013,46:48.
5 García Alvaro, Moises Bueno, Jose Norambuena-Contreras , et al. Induction healing of dense asphalt concrete[J]. Construction and Building Materials, 2013,49:1.
6 García Alvaro, Norambuena-Contreras J , et al. Uniformity and mechanical properties of dense asphalt concrete with steel wool fibers[J]. Construction and Building Materials, 2013,43:107.
7 Guan Bowen . Application of fiber brucite reinforced concrete in highway engineering[D]. Xi’an:Chang’an University, 2010(in Chinese).
8 关博文 . 水镁石纤维路面混凝土公路工程应用研究[D]. 西安:长安大学, 2010.
9 Wang Yan . Application of fiber brucite reinforced concrete in highway engineering[D]. Xi’an:Chang’an University, 2012(in Chinese).
10 王燕 . 水镁石纤维混凝土路面材料及结构设计研究[D]. 西安:长安大学, 2012.
11 Li Feng . The research on the durability of the fiber brucite in the concrete[D]. Xi’an:Chang’an University, 2012(in Chinese).
12 李锋 . 水镁石纤维混凝土的耐久性研究[D]. 西安:长安大学, 2012.
13 Xiong Rui, Yang Xiaokai, Yang Fa, et al.Laboratory investigation of performance of coal gangue powder/brucite fiber modified asphalt mortar[J].Journal of Wuhan University of Technology, 2016(2):11(in Chinese).
14 熊锐, 杨晓凯, 杨发 , 等. 煤矸石粉/水镁石纤维复合改性沥青胶浆性能试验研究[J]. 武汉理工大学学报, 2016(2):11.
15 Xiong Rui, Guan Bowen, Sheng Yanping . Anti-fatigue property of brucite fiber reinforced asphalt mixture under sulfate and dry-wet circle corrosion environment[J]. Journal of Wuhan University of Technology, 2014,36(10):45(in Chinese).
16 熊锐, 关博文, 盛燕萍 . 硫酸盐-干湿循环侵蚀环境下水镁石纤维沥青混合料抗疲劳性能[J]. 武汉理工大学学报, 2014,36(10):45.
17 Wu Mengmeng, Li Rui, Zhang Yuzhen , et al. Study of high and low temprerature performance of fiber-asphalt mortar[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015,39(1):169(in Chinese).
18 吴萌萌, 李睿, 张玉贞 , 等. 纤维沥青胶浆高低温性能研究[J]. 中国石油大学学报(自然科学版), 2015,39(1):169.
19 Chen Huaxin, Xu Qinwu . Experimental study of fibers in stabilizing and reinforcing asphalt binder[J]. Fuel, 2010,89:1616.
20 Chen Huaxin, Zhang Zhengqi, Hu Changshun . Interaction mechanism of asphalt with fiber in pavement[J]. Journal of Chang’an University(Edition of Natural Science), 2002,22(6):5(in Chinese).
21 陈华鑫, 张争奇, 胡长顺 . 纤维沥青路用性能机理[J]. 长安大学学报(自然科学版), 2002,22(6):5.
22 Song Yunxiang, Wei Youpo, Li Yumei , et al. Road performance of basalt fiber reinforced asphalt mastic[J]. Journal of Highway and Transportation Research and Development, 2012,29(8):15(in Chinese).
23 宋云祥, 韦佑坡, 李玉梅 , 等. 玄武岩纤维沥青胶浆的路用性能[J]. 公路交通科技, 2012,29(8):15.
24 Ye Qunshan, Wu Shaopeng . Rheological characteristics of polyester fiber modified asphalt mastic[J]. Journal of Highway and Transportation Research and Development, 2009,26(9):37(in Chinese).
25 叶群山, 吴少鹏 . 聚酯纤维沥青胶浆流变特性研究[J]. 公路交通科技, 2009,26(9):37.
26 Chen Huaxin, Zhang Zhengqi, Hu Changshun . Low-temperature anti-cracking performance of fiber-reinforced asphalt mixture[J]. Journal of South China University of Technology(Edition of Natural Science), 2004,32(4):82(in Chinese).
27 陈华鑫, 张争奇, 胡长顺 . 纤维沥青混合料低温抗裂性能[J]. 华南理工大学学报(自然科学版), 2004,32(4):82.
28 Chen H, Xu Q , et al. Evaluation and design of fiber reinforced asphalt mixture[J]. Material and Design, 2009,30:2595.
29 Dong Biqin, Han Ningxu, Ding Zhu , et al. A preliminary study of synthesized-insitu fiber in cement materials[J]. Construction and Buil-ding Materials, 2013,40:10.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[6] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[7] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[8] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[9] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[10] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[11] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[12] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[13] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[14] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[15] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed