Research Advances and Development Trends of Acrylic Acid-based Waterborne Traffic Marking Paints
ZHENG Zhi1, GUO Naisheng1,*, JIN Xin1,2, FANG Chenze1, YOU Zhanping3, TAN Yiqiu4
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China 2 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China 3 Department of Civil and Environmental Engineering, Michigan Technological University, Houghton MI49931, Michigan, USA 4 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
Abstract: As an essential part of traffic safety facility, traffic markings play a crucial role in controlling road traffic and improving traffic safety. However, the conventional solvent-based and hot-melt marking paints have deficiencies such as high cost, poor retro-reflectivity, inferior aging resistance, and large environmental pollution. Hence there is an urgent need to seek new marking paint products that can overcome the aforementioned deficiencies. Acrylic acid-based waterborne traffic marking paints have been found highly durable and environmental friendly, and capable of facilitating rapid construction, are considered as the best marking paint candidate with respect to overall performance in the whole life-cycle assessment, and as one of the major development directions in the future. In recent years, intensive and fruitful research efforts have been made in improving the working performances of acrylic acid-based waterborne traffic marking paints from the perspectives of physical modification, chemical modification and mixing proportion optimization. And the rapid development of nano-materials and rare-earth luminescent materials also provides infinite possibilities for acrylic acid-based waterborne paints. However, acrylic acid-based paints haven't yet found wide applications in traffic engineering, and also needs further improvement in comprehensive performance. Moreover, current research has been concentrated in the macroscopic scale domain. The microscopic properties of acrylic acid-based waterborne paints have not been thoroughly studied, and the understanding of the relationship between macroscopic properties and microscopic structural properties remains unclear. The existing performance evaluation methods of acrylic acid-based waterborne paints cannot fully reflect the whole-life-cycle functionality and durability requirements of the traffic marking paints. This urges the establishment of a comprehensive and systematic evaluation system for acrylic acid-based waterborne traffic marking paints. Furthermore, some researchers, though have studied the performance evolution of the acrylic acid-based coatings during their service life, mostly focused on retro-reflective performance and left the performance prediction model immature. In addition, there can be found few works studying the performances and underlying mechanisms of the paint-pavement adhesion interfaces. After depicting necessary basic knowledge about chemical structure and properties of water-based acrylic acid emulsions, this review summarizes systematically the main present research progress of acrylic acid-based waterborne traffic marking paints from the perspectives of modification methods, mixing proportion optimization, and performance evaluation methods. It ends with a discussion on currently existing problems and the future development trend.
通讯作者:
*郭乃胜,大连海事大学交通运输工程学院教授、博士研究生导师。2007年3月份毕业于大连海事大学,获得工学博士学位。2009—2012年在哈尔滨工业大学进行博士后研究工作。2013—2014年美国密歇根理工大学访问学者。目前主要从事沥青与沥青混合料等方面的研究工作。发表论文80余篇,其中SCI、EI检索50余篇,包括Construction and Building Materials、International Journal of Pavement Engineering、Journal of Materials in Civil Engineering、Transportation B等。naishengguo@dlmu.edu.cn
1 Shan B L. Preparation of high performance long afterglow material and its application in road marking. Master's Thesis, Chongqing Jiaotong University, China, 2020 (in Chinese).
单柏林. 高性能长余辉材料的制备及其在道路标线中的应用. 硕士学位论文, 重庆交通大学, 2020.
2 Naidoo S, Steyn W J V. Journal of the South African Institution of Civil Engineering, 2018, 60(2), 9.
3 Letsoalo C P. In:Conference Record of the Second South African Road Federation/Road Traffic Management Corporation Conference. Johannesburg, 2012, pp. 23.
4 Horberry T, Anderson J, Regan M A. Transportation Research Part F: Psychology and Behaviour, 2005, 9(1), 77.
5 Gao K Y, Gao E Y. China Building Materials Science & Technology, 2020, 29(4), 47 (in Chinese).
高匡宇, 高尔雅. 中国建材科技, 2020, 29(4), 47.
6 Feng Y, Ma P R, Jiang S B, et al. Journal of Municipal Technology, 2022, 40(9), 64 (in Chinese).
冯宇, 马鹏蕊, 蒋少波, 等. 市政技术, 2022, 40(9), 64.
7 Pang D Q. China Coatings, 2011, 26(10), 40 (in Chinese).
庞第驱. 中国涂料, 2011, 26(10), 40.
8 Burghardt T E, Pashkevich A, Fiolić M, et al. Advances in Transportation Studies, 2019, 47(7), 49.
9 Sun W. Research on the development and properties of asphalt pavement heat-reflective waterborne coating materials. Master's Thesis, Southeast University, China, 2016 (in Chinese).
孙威. 沥青路面热反射水性涂层材料制备与性能研究. 硕士学位论文, 东南大学, 2016.
10 Liu B. Synthesis and research of organosilicon modified waterborne acrylic resin. Master's Thesis, Jiangsu University of Science and Technology, China, 2018 (in Chinese).
刘标. 有机硅改性水性丙烯酸树脂的合成与研究. 硕士学位论文, 江苏科技大学, 2018.
11 Zhong Q F. Study on synthesis of waterborne acrylate resin and their modification. Master's Thesis, Guangdong University of Technology, China, 2007 (in Chinese).
钟强锋. 水性丙烯酸树脂的合成及其改性的研究. 硕士学位论文, 广东工业大学, 2007.
12 Cheng H H. Preparation and properties of core-shell acrylic resin emulsion. Master's Thesis, Shaanxi University of Science and Technology, China, 2020 (in Chinese).
成航航. 核壳型丙烯酸树脂乳液的制备及性能研究. 硕士学位论文, 陕西科技大学, 2020.
13 He L. Studies on the controlled synthesis and rheological behaviors of waterborne acrylic emulsion with core-shell structure. Ph.D. Thesis, Wuhan University, China, 2015 (in Chinese).
何浪. 核壳结构水性丙烯酸树脂乳液的可控制备及其流变行为研究. 博士学位论文, 武汉大学, 2015.
14 Wang X M. Study of water-borne acrylic resin coating. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).
王晓明. 水性丙烯酸树脂涂料的研究. 硕士学位论文, 南京航空航天大学, 2012.
15 Geng H Q. Preparation and properties of water-based high hydroxyl acrylate/isocyanate composite coatings. Master's Thesis, Shaanxi University of Science and Technology, China, 2020 (in Chinese).
耿欢琼. 水性高羟值丙烯酸树脂/异氰酸酯复合涂料的制备及性能研究. 硕士学位论文, 陕西科技大学, 2020.
16 Pi P H, Chen X, Wen X F, et al. Journal of Coatings Technology and Research, 2016, 13(1), 73.
17 Sharma B, Sauraj S,Kumar B, et al. Polymer Engineering & Science, 2021, 61(5), 1569.
18 Dashtizadeh A, Abdouss M, Mahdavi H, et al. Journal of Polymer Engineering, 2013, 33(4), 357.
19 Zhang J, Wang G, Zeng G P, et al. Jiangxi Science, 2018, 36(4), 551 (in Chinese).
张军, 王刚, 曾国屏, 等. 江西科学, 2018, 36(4), 551.
20 Bengert C U S. European Coatings Journal, 2001, 11, 50.
21 Craig W N, Sitzabee W E, Rasdorf W J,et al. Public Works Management & Policy, 2007, 12(2), 431.
22 Zhang Y, Teng J J, Huang Z, et al. Journal of Guangdong University of Petrochemical Technology, 2014, 24(1), 4 (in Chinese).
张阳, 滕俊江, 黄展, 等. 广东石油化工学院学报, 2014, 24(1), 4.
23 Zeng G P, Dong Q L, Liu D W, et al. New Chemical Materials, 2021, 49(12), 12 (in Chinese).
曾国屏, 董清龙, 刘德旺, 等. 化工新型材料, 2021, 49(12), 12.
24 Su L J. Preparation and characterization of self-cleaning fluorinated polyacrylate emulsion. Master's Thesis, Shanxi University, China, 2017 (in Chinese).
苏利军. 自清洁氟碳乳液的制备及其性能的研究. 硕士学位论文, 山西大学, 2017.
25 Wang W M. Research on the waterborne exterior wall fluorocarbon coating modified by nanometer TiO2. Master's Thesis, Jiangsu University of Science and Technology, China, 2010 (in Chinese).
王文明. 水性纳米TiO2改性氟碳外墙涂料的研究. 硕士学位论文, 江苏科技大学, 2010.
26 Gui T J. Modern Paint & Finishing, 2006(9), 30 (in Chinese).
桂泰江. 现代涂料与涂装, 2006(9), 30.
27 Dong L Z, Shang P, Liu H L, et al. China Coatings, 2012, 27(2), 27 (in Chinese).
董立志, 商培, 刘洪亮, 等. 中国涂料, 2012, 27(2), 27.
28 Sun S W, Jin X, Deng C N,et al. Materials Reports, 2022, 36(S1), 204 (in Chinese).
孙思威, 金鑫, 邓昌宁, 等. 材料导报, 2022, 36(S1), 204.
29 Taheri M, Jahanfar M, Ogino K. Journal of Nanomaterials, 2018, 2018, 1.
30 Hatami M, Djafarzadeh N, Hasanabadi H. Advances in Polymer Technology, 2018, 37(6), 1837.
22120007-1031 Wang Y T, Ren T B, Gu S Y, et al. Journal of Building Materials, 2007(6), 677 (in Chinese).
王永涛, 任天斌, 顾书英, 等. 建筑材料学报, 2007(6), 677.
32 Liu Y R. Journal of Huaiyin Institute of Technology, 2022, 31(3), 26 (in Chinese).
刘怡然. 淮阴工学院学报, 2022, 31(3), 26.
33 Duan D F. Preparation of TiO2 NPs and its effect on the surface of the external wall coating. Master's Thesis, Chongqing University, China, 2013 (in Chinese).
段东方. 纳米TiO2的制备及对外墙涂料表面改性研究. 硕士学位论文, 重庆大学, 2013.
34 Wang Z Y, Han E H, Liu F C, et al. Journal of Materials Science & Technology, 2014, 30(10), 1036.
35 Suzuki S, Part F, Matsufuji Y, et al. Waste Management, 2018, 72, 389.
36 Yang L, Zhou S X, Wu L M. Progress in Organic Coatings, 2015, 85, 208.
37 Veronovski N, Verhovšek D, Godnjavec J. Wood Science and Technology, 2013, 47(2), 317.
38 He Z C. Effect of TiO2 surface topography characteristics on adsorption behavior of single protein system and multiple proteins system. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).
何湛聪. 二氧化钛表面拓扑特征对单蛋白吸附及其群体吸附行为影响的研究. 硕士学位论文, 华南理工大学, 2019.
39 Liu Y M. Surface functionalization of TiO2 and the application. Ph.D. Thesis, Jiangsu University, China, 2011 (in Chinese).
刘于民. 二氧化钛表面功能化及应用研究. 博士学位论文, 江苏大学, 2011.
40 Tong W, Yin Q C, Yin L H, et al. Powder Metallurgy Industry, 2017, 27(1), 71 (in Chinese).
佟威, 尹青春, 尹连海, 等. 粉末冶金工业, 2017, 27(1), 71.
41 Du B, Chen F, Luo R B, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
42 Taheri M, Jahanfar M, Ogino K. Surfaces and Interfaces, 2017, 9, 13.
43 Song B J, Shi Y C, Liu Q D. Polymers for Advanced Technologies, 2020, 31(2), 309.
44 Mo Y Y, Fu Y L. Paint & Coatings Industry, 2009, 39(11), 63 (in Chinese).
莫引优, 符韵林. 涂料工业, 2009, 39(11), 63.
45 Rostami M, Mohseni M, Ranjbar Z. International Journal of Adhesion and Adhesives, 2012, 34, 24.
46 Dashtizadeh A,Abdouss M, Khorassani M, et al. Journal of Plastic Film & Sheeting, 2012, 28(2), 120.
47 Sun D X, Zhang Y H, Shen X. China Coatings, 2006(12), 28 (in Chinese).
孙道兴, 张宜恒, 申新. 中国涂料, 2006(12), 28.
48 Chawla R, Singhal P, Garg A. Journal of the Minerals, Metals & Mate-rials Society, 2019,71, 1634.
49 Liu B L, Wang M Q, Liang Y, et al. Coatings, 2019, 9(6), 348.
50 Adnan A M, Lu C F, Luo X,et al. International Journal of Pavement Engineering, DOI: 10.1080/10298436.2021.2020268.
51 Adnan A M, Lu C F, Luo X, et al. Journal of Materials in Civil Engineering, 2021, 33(11), 0003957.
52 Adnan A M, Luo X, Lu C F, et al. Construction and Building Materials, 2020, 254, 119261.
53 Liu L Q, Guo X F, Shi L, et al. Advanced Composites Letters, 2020, 29, 2633366X20941524.
54 Zhou T, Zhang J, Zhao J G, et al. Surface and Coatings Technology, 2021, 412, 127043.
55 Chen C F, Wang Y L, Pan G Q, et al. Journal of Coatings Technology and Research, 2014, 11(5), 785.
56 Burghardt T E, Maki E, Pashkevich A. Case Studies in Construction Materials, 2021, 14, e00539.
57 Zhang G H, Hummer J E, Rasdorf W. Journal of Transportation Engineering, 2010, 136(8), 773.
58 Nance J, Sparks T D. Progress in Organic Coatings, 2020, 144, 105637.
59 Grosges T. Optical Materials, 2008, 30(10), 1549.
60 He R, Liang Y P, Xie R S, et al. Journal of Chang'an University (Natural Science Edition), 2022, 42(3), 1 (in Chinese).
何锐, 梁映平, 解瑞松, 等. 长安大学学报(自然科学版), 2022, 42(3), 1.
61 Xu J H, Chen C, Wan H, et al. Technology of Highway and Transport, 2017, 33(6), 14 (in Chinese).
徐建晖, 陈诚, 万宏, 等. 公路交通技术, 2017, 33(6), 14.
62 Huang W X, Zeng H P, Yu L, et al. Journal of South China Normal University (Natural Science Edition), 2011(3), 66 (in Chinese).
黄韦星, 曾和平, 余力, 等. 华南师范大学学报(自然科学版), 2011(3), 66.
63 Lyu L, Chen Y X, Yu L T, et al. Materials, 2020, 13(2), 426.
64 Rojas-Hernandez R E, Rubio-Marcos F, Rodriguez M A, et al. Rene-wable and Sustainable Energy Reviews, 2018, 81, 2759.
65 Botterman J, Smet P F. Optics Express, 2015, 23(15), A868.
66 Han S D,Singh K C, Cho T Y, et al. Journal of Luminescence, 2007, 128(3), 301.
67 Zhuang J Q, Xia Z G, Liu H K, et al. Applied Surface Science, 2011, 257(9), 4350.
68 Xia Z G, Li G W, Chen D M, et al. Materials Letters, 2009, 63(29), 2600.
69 Nguyen H D, Lin C C, Liu R S. Angewandte Chemie-International Edition, 2015, 54(37), 10862.
70 Zhang L, Hu J W, Feng M L, et al. New Chemical Materials, 2022, 50(3), 54 (in Chinese).
张丽, 胡建伟, 冯蒙丽, 等. 化工新型材料, 2022, 50(3), 54.
71 Vitola V,Millers D, Bite I, et al. Materials Science and Technology, 2019, 35(14), 1661.
72 Wang C S, Zhang J, Chen J H, et al. International Journal of Biological Macromolecules, 2022, 208, 97.
73 Miao C C, Li Z H, Li K, et al. Progress in Organic Coatings, 2022, 165, 106741.
74 Li F Q, Liang Z, Li Y X, et al. Composites Part B, 2022, 238, 109889.
75 Bao J J, Liu D B, Xie W, et al. Textile Auxiliaries, 2007(3), 27 (in Chinese).
鲍俊杰, 刘都宝, 谢伟, 等. 印染助剂, 2007(3), 27.
76 Wu M J, Ruan J S, Wang X Q, et al. Chemical Propellants & Polymeric Materials, 2011, 9(1), 61 (in Chinese).
吴明江, 阮家声, 王雪琴, 等. 化学推进剂与高分子材料, 2011, 9(1), 61.
77 Zhu K. Study on preparetion and anticorrosion propertiers of acrylate-epoxy resin core-shell emulsion and graphene composites coatings. Ph.D. Thesis, Shaanxi University of Science and Technology, China, 2018 (in Chinese).
朱科. 丙烯酸酯-环氧树脂核壳乳液及石墨烯复合涂料的制备与防腐性能研究. 博士学位论文, 陕西科技大学, 2018.
78 Zhang D B. Synthesis and properties of self cross-linkable core-shell latex at ambient temperature. Ph.D. Thesis, Zhejiang University, China, 2006 (in Chinese).
张继德. 室温交联核/壳结构乳液的制备及其性能研究. 博士学位论文, 浙江大学, 2006.
79 Zhang X Y, Wei X, Chen H Q. Paint & Coatings Industry, 2009, 39(12), 17 (in Chinese).
张心亚, 魏霞, 陈焕钦. 涂料工业, 2009, 39(12), 17.
80 Wang P Z, Wang J H, Wen S G, et al. China Adhesives, 2014, 23(4), 42 (in Chinese).
汪鹏主, 王继虎, 温绍国, 等. 中国胶粘剂, 2014, 23(4), 42.
81 Wu Z M, Zhang S F, He Y F, et al. Fine Chemicals, 2014, 31(5), 649 (in Chinese).
吴战民, 张少飞, 何玉凤, 等. 精细化工, 2014, 31(5), 649.
82 Zhao Q X. Synthesis and properties of waterborne nitrocellulose emulsion based on acrylic copolymer. Ph.D. Thesis, Shaanxi University of Science and Technology, China, 2016 (in Chinese).
赵擎霄. 丙烯酸接枝共聚型水性硝化纤维乳液的合成及性能研究. 博士学位论文, 陕西科技大学, 2016.
83 Liu X D, Chen Z M, Dong J. AppliedChemical Industry, 2007(1), 68 (in Chinese).
刘晓冬, 陈志明, 董劲. 应用化工, 2007(1), 68.
22120007-1184 Sun D X, Ding X B. Electroplating & Finishing, 2008(4), 47 (in Chinese).
孙道兴, 丁小斌. 电镀与涂饰, 2008(4), 47.
85 Song B B, Bao C L, Wang L S, et al. Paint & Coatings Industry, 2011, 41(10), 15 (in Chinese).
宋蓓蓓, 包春磊, 王炼石, 等. 涂料工业, 2011, 41(10), 15.
86 Tan J Q, Liu W Q, Wang H L, et al. Progress in Organic Coatings, 2016, 94, 62.
87 Li T Q, Zhang P A, Chen B, et al. Journal of Applied Polymer Science, 2020, 137(45), e49384.
88 Wang H H, Qin X, Fei G Q, et al. Colloid and Polymer Science, 2018, 296(3), 585.
89 Huang S S, Liu G L, Zhang K K, et al. Chemical Engineering Journal, 2019, 360, 445.
90 Sun Z W, Zhang L L, Zhou Z H. Paint & Coatings Industry, 2005(8), 22 (in Chinese).
孙再武, 张伶俐, 周子鹄. 涂料工业, 2005(8), 22.
91 Huybrechts J,Bruylants P, Kirshenbaum K, et al. Progress in Organic Coatings, 2002, 45(2), 173.
92 Li R Q, Huang T, Gong S L. Journal of Applied Polymer Science, 2020, 137(2), 48278.
93 Wang Y J, Yang J J, Zhang J A, et al. China Adhesives, 2008(11), 51 (in Chinese).
王月菊, 杨建军, 张建安, 等. 中国胶粘剂, 2008(11), 51.
94 Xiao L, Yan D M, Xu W C. Dyestuffs and Coloration, 2017, 54(4), 18 (in Chinese).
肖龙, 鄢冬茂, 胥维昌. 染料与染色, 2017, 54(4), 18.
95 Liang Z. Shanghai Coatings, 2006(5), 6 (in Chinese).
梁哲. 上海涂料, 2006(5), 6.
96 Ding C F, Wang H T, Chen L, et al. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2003(S1), 53 (in Chinese).
丁彩凤, 王海亭, 陈磊, 等. 青岛科技大学学报(自然科学版), 2003(S1), 53.
97 Fatemi S, Varkani M K, Bastani S, et al. Progress in Organic Coatings, 2006, 55(4), 337.
98 Mirabedini S M, Jamali S S, Haghayegh M, et al. Progress in Organic Coatings, 2012, 75(4), 549.
99 Hadizadeh E,Pazokifard S, Mirabedini S M, et al. Progress in Organic Coatings, 2020, 147, 105784.
100 Ronkainen H,Koskinen J, Varjus S, et al. Surface & Coatings Technology, 1999, 122(2), 150.
101 Kircher T A, McMordie B G, Richards K. Surface & Coatings Technology, 1998, 108, 24.
102 Pichavant L, Coqueret X. Progress in Organic Coatings, 2008, 63(1), 55.
103 Taheran M, Navarchian A H, Razavi R S. Progress in Organic Coatings, 2011, 72(3), 486.
104 Hosseini S G, Eslami A. Progress in Organic Coatings, 2010, 68(4), 313.
105 Kardar R,Ebrahimi M, Bastani S, et al. Progress in Organic Coatings, 2008, 64(1), 74.
106 Soucek M D, Johnson A H, Wegner J M. Progress in Organic Coatings, 2004, 51(4), 300.
107 Kuang H Z, Liao Z G, Liu B M. Highway, 2007(9), 85 (in Chinese).
邝宏柱, 廖志高, 柳本民. 公路, 2007(9), 85.
108 Tan Y Q, Xiao S Q, Xiong X T. Journal of Traffic and Transportation Engineering, 2021, 21(4), 32 (in Chinese).
谭忆秋, 肖神清, 熊学堂. 交通运输工程学报, 2021, 21(4), 32.
109 Ahammed M A, Tighe S L. Transportation Research Record, 2009, 2094(1), 112.
110 Burghardt T E, Pashkevich A. Atmospheric Environment, 2018, 193, 153.
111 Parikka-Alhola K, Nissinen A. In:Conference Record of the 3rd International Public Procurement Conference. Amsterdam, 2008, pp. 655.
112 Anthonissen J,Van Troyen D, Braet J, et al. Journal of Cleaner Production, 2015, 102, 96.
113 Burghardt T E, Pashkevich A. Journal of Cleaner Production, 2021, 298, 126521.
114 Faith-Ell C, Balfors B, Folkeson L. Journal of Cleaner Production, 2004, 14(2), 163.
115 Cruz M, Klein A, Steiner V. Transportation Research Procedia, 2016, 14, 869.
116 Wu R R, Xie S D. Environmental Science & Technology, 2017, 51(5), 2574.
117 Luecken D J, Mebust M R. Environmental Science & Technology, 2008, 42(5), 1615.
118 Patel K,Doyle C S, Yonekura D, et al. Surface & Coatings Technology, 2010, 204(21), 3567.
119 Rad A S, Afshar A, Azadeh M. Optical Materials, 2020, 107, 110027.
120 Mirabedini S M,Pazoki S, Esfandeh M, et al. Progress in Organic Coa-tings, 2006, 57(4), 421.
121 Zheng S L,Bellido-Aguilar D A, Hu J, et al. Progress in Organic Coa-tings, 2019, 136, 105265.
122 Chen L J, Shi H X, Wu H K, et al. Journal of Fluorine Chemistry, 2010, 131(6), 731.
123 Bharathidasan T,Kumar S V, Bobji M S, et al. Applied Surface Science, 2014, 314, 241.
124 Yang W R,Zhang K, Yuan J, et al. Road Materials and Pavement Design, 2022, 23(4), 874.
125 Peng C,Chen P X, You Z P, et al. Construction and Building Materials, 2018, 190, 83.
126 Bahlakeh G, Ramezanzadeh B. ACS Applied Materials & Interfaces, 2017, 9(20), 17536.
127 Zhang X,Zhong Y L, Li L, et al. Journal of Applied Polymer Science, 2014, 131(15), 40507.
128 Zhang X, Zhong Y L, Zhang X F, et al. Surface and Interface Analysis, 2013, 45(13), 1893.
129 Wang Z Z, Gu P, Zhang Z. Wear, 2010, 269(1), 21.
130 Carlson P J, Park E S, Andersen S K. Transportation Research Record, 2009, 2107(1), 59.
131 Ozelim L, Turochy R E. Journal of Transportation Engineering, 2014, 140(6), 05014001.
132 Wang C, Wang Z H, Tsai Y C. Transportation Research Record, 2016, 2551(1), 52.
133 Hummer J E, Rasdorf W, Zhang G H. Journal of Transportation Engineering, 2011, 137(10), 705.
134 Sitzabee W E, Hummer J E, Rasdorf W. Journal of Infrastructure Systems, 2009, 15(3), 190.
135 Mull D M, Sitzabee W E. Journal of Transportation Engineering, 2012, 138(5), 618.
136 Mohamed M,Skinner A, Abdel-Rahim A, et al. Journal of Transportation Engineering, Part B: Pavements, 2019, 145(2), 04019003.
137 Elwakil E, Eweda A, Zayed T. Structure and Infrastructure Engineering, 2014, 10(1), 93.
138 Zhang H T, Zhou Y, Cheng P, et al. Journal of Mathematical Chemistry, 2009, 46(4), 1050.