Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 22120007-12    https://doi.org/10.11896/cldb.22120007
  高分子与聚合物基复合材料 |
水性丙烯酸交通标线涂料研究现状与发展趋势
郑直1, 郭乃胜1,*, 金鑫1,2, 房辰泽1, 尤占平3, 谭忆秋4
1 大连海事大学交通运输工程学院,辽宁 大连 116026
2 沈阳建筑大学交通与测绘工程学院,沈阳 110168
3 密歇根理工大学土木与环境工程系,密歇根 霍顿 MI49931
4 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
Research Advances and Development Trends of Acrylic Acid-based Waterborne Traffic Marking Paints
ZHENG Zhi1, GUO Naisheng1,*, JIN Xin1,2, FANG Chenze1, YOU Zhanping3, TAN Yiqiu4
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
2 School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
3 Department of Civil and Environmental Engineering, Michigan Technological University, Houghton MI49931, Michigan, USA
4 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
下载:  全 文 ( PDF ) ( 4197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 交通标线作为重要的交通安全设施,在控制道路交通、提高道路行车安全系数方面发挥着极其重要的作用。但传统的溶剂型与热熔型交通标线涂料存在成本高、逆反射性能差、老化现象严重等缺陷,并且在使用过程中会对环境造成较大的污染。因此,亟须寻求一种能有效弥补上述缺陷的新型交通标线涂料。水性丙烯酸交通标线涂料凭借着优良的耐久性能与环保性能以及高效的施工性,被视为全寿命周期评价中综合性能最佳的交通标线涂料,是未来交通标线涂料的主要发展方向之一。
近年来,学者们通过对水性丙烯酸交通标线涂料进行物理改性、化学改性以及配合比优化,使其使用性能得到了显著的改善,并取得了丰硕的成果。同时纳米材料与稀土类发光材料的快速发展也为水性丙烯酸交通标线涂料提供了无限的可能。但目前水性丙烯酸交通标线涂料在我国的使用率仍然相对较低,其综合性能也有待进一步提升。并且当前研究主要停留在宏观尺度域,未对水性丙烯酸交通标线涂料的细微观特性进行充分研究,也未能建立起宏观性能与细微观结构属性之间的联系。与此同时,现有的水性丙烯酸交通标线涂料评价方法无法满足其在全寿命周期内的功能性与耐久性需求,尚缺乏一套全面、系统的水性丙烯酸交通标线涂料评价体系。尽管部分学者对水性丙烯酸交通标线涂料服役期内的性能演化规律进行了研究,但多针对逆反射性能,性能预测模型仍不够全面。此外,鲜见针对水性丙烯酸交通标线涂料与路面的黏结界面性能及内在机理的研究。
本文综述了近年来水性丙烯酸交通标线涂料的重要研究进展。从概述水性丙烯酸乳液的化学结构与特性出发,之后从改性方法、配合比优化、性能研究等方面重点介绍了水性丙烯酸交通标线涂料的发展现状。文章最后提出了研究中存在的问题并展望了未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑直
郭乃胜
金鑫
房辰泽
尤占平
谭忆秋
关键词:  道路工程  水性丙烯酸交通标线涂料  水性丙烯酸树脂  配合比设计  微观特性  耐久性  逆反射性    
Abstract: As an essential part of traffic safety facility, traffic markings play a crucial role in controlling road traffic and improving traffic safety. However, the conventional solvent-based and hot-melt marking paints have deficiencies such as high cost, poor retro-reflectivity, inferior aging resistance, and large environmental pollution. Hence there is an urgent need to seek new marking paint products that can overcome the aforementioned deficiencies. Acrylic acid-based waterborne traffic marking paints have been found highly durable and environmental friendly, and capable of facilitating rapid construction, are considered as the best marking paint candidate with respect to overall performance in the whole life-cycle assessment, and as one of the major development directions in the future.
In recent years, intensive and fruitful research efforts have been made in improving the working performances of acrylic acid-based waterborne traffic marking paints from the perspectives of physical modification, chemical modification and mixing proportion optimization. And the rapid development of nano-materials and rare-earth luminescent materials also provides infinite possibilities for acrylic acid-based waterborne paints. However, acrylic acid-based paints haven't yet found wide applications in traffic engineering, and also needs further improvement in comprehensive performance. Moreover, current research has been concentrated in the macroscopic scale domain. The microscopic properties of acrylic acid-based waterborne paints have not been thoroughly studied, and the understanding of the relationship between macroscopic properties and microscopic structural properties remains unclear. The existing performance evaluation methods of acrylic acid-based waterborne paints cannot fully reflect the whole-life-cycle functionality and durability requirements of the traffic marking paints. This urges the establishment of a comprehensive and systematic evaluation system for acrylic acid-based waterborne traffic marking paints. Furthermore, some researchers, though have studied the performance evolution of the acrylic acid-based coatings during their service life, mostly focused on retro-reflective performance and left the performance prediction model immature. In addition, there can be found few works studying the performances and underlying mechanisms of the paint-pavement adhesion interfaces.
After depicting necessary basic knowledge about chemical structure and properties of water-based acrylic acid emulsions, this review summarizes systematically the main present research progress of acrylic acid-based waterborne traffic marking paints from the perspectives of modification methods, mixing proportion optimization, and performance evaluation methods. It ends with a discussion on currently existing problems and the future development trend.
Key words:  road engineering    acrylic acid-based waterborne traffic marking paint    water-based acrylic resin    mixing proportion design    microscopic property    durabily    retro-reflectivity
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  U414  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);大连海事大学“双一流”建设专项(BSCXXM021);辽宁公路科技创新重点科研项目(201701);大连市科技创新基金项目(2020JJ26SN062);辽宁省教育厅基金项目(LJKMZ20220922)
通讯作者:  *郭乃胜,大连海事大学交通运输工程学院教授、博士研究生导师。2007年3月份毕业于大连海事大学,获得工学博士学位。2009—2012年在哈尔滨工业大学进行博士后研究工作。2013—2014年美国密歇根理工大学访问学者。目前主要从事沥青与沥青混合料等方面的研究工作。发表论文80余篇,其中SCI、EI检索50余篇,包括Construction and Building Materials、International Journal of Pavement Engineering、Journal of Materials in Civil Engineering、Transportation B等。naishengguo@dlmu.edu.cn   
作者简介:  郑直,2022年6月毕业于沈阳建筑大学,获得工学硕士学位。现为大连海事大学交通运输工程学院博士研究生,在郭乃胜教授的指导下进行研究。目前主要研究领域为新型环保型道路工程材料。
引用本文:    
郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
ZHENG Zhi, GUO Naisheng, JIN Xin, FANG Chenze, YOU Zhanping, TAN Yiqiu. Research Advances and Development Trends of Acrylic Acid-based Waterborne Traffic Marking Paints. Materials Reports, 2024, 38(21): 22120007-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120007  或          http://www.mater-rep.com/CN/Y2024/V38/I21/22120007
1 Shan B L. Preparation of high performance long afterglow material and its application in road marking. Master's Thesis, Chongqing Jiaotong University, China, 2020 (in Chinese).
单柏林. 高性能长余辉材料的制备及其在道路标线中的应用. 硕士学位论文, 重庆交通大学, 2020.
2 Naidoo S, Steyn W J V. Journal of the South African Institution of Civil Engineering, 2018, 60(2), 9.
3 Letsoalo C P. In:Conference Record of the Second South African Road Federation/Road Traffic Management Corporation Conference. Johannesburg, 2012, pp. 23.
4 Horberry T, Anderson J, Regan M A. Transportation Research Part F: Psychology and Behaviour, 2005, 9(1), 77.
5 Gao K Y, Gao E Y. China Building Materials Science & Technology, 2020, 29(4), 47 (in Chinese).
高匡宇, 高尔雅. 中国建材科技, 2020, 29(4), 47.
6 Feng Y, Ma P R, Jiang S B, et al. Journal of Municipal Technology, 2022, 40(9), 64 (in Chinese).
冯宇, 马鹏蕊, 蒋少波, 等. 市政技术, 2022, 40(9), 64.
7 Pang D Q. China Coatings, 2011, 26(10), 40 (in Chinese).
庞第驱. 中国涂料, 2011, 26(10), 40.
8 Burghardt T E, Pashkevich A, Fiolić M, et al. Advances in Transportation Studies, 2019, 47(7), 49.
9 Sun W. Research on the development and properties of asphalt pavement heat-reflective waterborne coating materials. Master's Thesis, Southeast University, China, 2016 (in Chinese).
孙威. 沥青路面热反射水性涂层材料制备与性能研究. 硕士学位论文, 东南大学, 2016.
10 Liu B. Synthesis and research of organosilicon modified waterborne acrylic resin. Master's Thesis, Jiangsu University of Science and Technology, China, 2018 (in Chinese).
刘标. 有机硅改性水性丙烯酸树脂的合成与研究. 硕士学位论文, 江苏科技大学, 2018.
11 Zhong Q F. Study on synthesis of waterborne acrylate resin and their modification. Master's Thesis, Guangdong University of Technology, China, 2007 (in Chinese).
钟强锋. 水性丙烯酸树脂的合成及其改性的研究. 硕士学位论文, 广东工业大学, 2007.
12 Cheng H H. Preparation and properties of core-shell acrylic resin emulsion. Master's Thesis, Shaanxi University of Science and Technology, China, 2020 (in Chinese).
成航航. 核壳型丙烯酸树脂乳液的制备及性能研究. 硕士学位论文, 陕西科技大学, 2020.
13 He L. Studies on the controlled synthesis and rheological behaviors of waterborne acrylic emulsion with core-shell structure. Ph.D. Thesis, Wuhan University, China, 2015 (in Chinese).
何浪. 核壳结构水性丙烯酸树脂乳液的可控制备及其流变行为研究. 博士学位论文, 武汉大学, 2015.
14 Wang X M. Study of water-borne acrylic resin coating. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).
王晓明. 水性丙烯酸树脂涂料的研究. 硕士学位论文, 南京航空航天大学, 2012.
15 Geng H Q. Preparation and properties of water-based high hydroxyl acrylate/isocyanate composite coatings. Master's Thesis, Shaanxi University of Science and Technology, China, 2020 (in Chinese).
耿欢琼. 水性高羟值丙烯酸树脂/异氰酸酯复合涂料的制备及性能研究. 硕士学位论文, 陕西科技大学, 2020.
16 Pi P H, Chen X, Wen X F, et al. Journal of Coatings Technology and Research, 2016, 13(1), 73.
17 Sharma B, Sauraj S,Kumar B, et al. Polymer Engineering & Science, 2021, 61(5), 1569.
18 Dashtizadeh A, Abdouss M, Mahdavi H, et al. Journal of Polymer Engineering, 2013, 33(4), 357.
19 Zhang J, Wang G, Zeng G P, et al. Jiangxi Science, 2018, 36(4), 551 (in Chinese).
张军, 王刚, 曾国屏, 等. 江西科学, 2018, 36(4), 551.
20 Bengert C U S. European Coatings Journal, 2001, 11, 50.
21 Craig W N, Sitzabee W E, Rasdorf W J,et al. Public Works Management & Policy, 2007, 12(2), 431.
22 Zhang Y, Teng J J, Huang Z, et al. Journal of Guangdong University of Petrochemical Technology, 2014, 24(1), 4 (in Chinese).
张阳, 滕俊江, 黄展, 等. 广东石油化工学院学报, 2014, 24(1), 4.
23 Zeng G P, Dong Q L, Liu D W, et al. New Chemical Materials, 2021, 49(12), 12 (in Chinese).
曾国屏, 董清龙, 刘德旺, 等. 化工新型材料, 2021, 49(12), 12.
24 Su L J. Preparation and characterization of self-cleaning fluorinated polyacrylate emulsion. Master's Thesis, Shanxi University, China, 2017 (in Chinese).
苏利军. 自清洁氟碳乳液的制备及其性能的研究. 硕士学位论文, 山西大学, 2017.
25 Wang W M. Research on the waterborne exterior wall fluorocarbon coating modified by nanometer TiO2. Master's Thesis, Jiangsu University of Science and Technology, China, 2010 (in Chinese).
王文明. 水性纳米TiO2改性氟碳外墙涂料的研究. 硕士学位论文, 江苏科技大学, 2010.
26 Gui T J. Modern Paint & Finishing, 2006(9), 30 (in Chinese).
桂泰江. 现代涂料与涂装, 2006(9), 30.
27 Dong L Z, Shang P, Liu H L, et al. China Coatings, 2012, 27(2), 27 (in Chinese).
董立志, 商培, 刘洪亮, 等. 中国涂料, 2012, 27(2), 27.
28 Sun S W, Jin X, Deng C N,et al. Materials Reports, 2022, 36(S1), 204 (in Chinese).
孙思威, 金鑫, 邓昌宁, 等. 材料导报, 2022, 36(S1), 204.
29 Taheri M, Jahanfar M, Ogino K. Journal of Nanomaterials, 2018, 2018, 1.
30 Hatami M, Djafarzadeh N, Hasanabadi H. Advances in Polymer Technology, 2018, 37(6), 1837.
22120007-1031 Wang Y T, Ren T B, Gu S Y, et al. Journal of Building Materials, 2007(6), 677 (in Chinese).
王永涛, 任天斌, 顾书英, 等. 建筑材料学报, 2007(6), 677.
32 Liu Y R. Journal of Huaiyin Institute of Technology, 2022, 31(3), 26 (in Chinese).
刘怡然. 淮阴工学院学报, 2022, 31(3), 26.
33 Duan D F. Preparation of TiO2 NPs and its effect on the surface of the external wall coating. Master's Thesis, Chongqing University, China, 2013 (in Chinese).
段东方. 纳米TiO2的制备及对外墙涂料表面改性研究. 硕士学位论文, 重庆大学, 2013.
34 Wang Z Y, Han E H, Liu F C, et al. Journal of Materials Science & Technology, 2014, 30(10), 1036.
35 Suzuki S, Part F, Matsufuji Y, et al. Waste Management, 2018, 72, 389.
36 Yang L, Zhou S X, Wu L M. Progress in Organic Coatings, 2015, 85, 208.
37 Veronovski N, Verhovšek D, Godnjavec J. Wood Science and Technology, 2013, 47(2), 317.
38 He Z C. Effect of TiO2 surface topography characteristics on adsorption behavior of single protein system and multiple proteins system. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).
何湛聪. 二氧化钛表面拓扑特征对单蛋白吸附及其群体吸附行为影响的研究. 硕士学位论文, 华南理工大学, 2019.
39 Liu Y M. Surface functionalization of TiO2 and the application. Ph.D. Thesis, Jiangsu University, China, 2011 (in Chinese).
刘于民. 二氧化钛表面功能化及应用研究. 博士学位论文, 江苏大学, 2011.
40 Tong W, Yin Q C, Yin L H, et al. Powder Metallurgy Industry, 2017, 27(1), 71 (in Chinese).
佟威, 尹青春, 尹连海, 等. 粉末冶金工业, 2017, 27(1), 71.
41 Du B, Chen F, Luo R B, et al. Advances in Materials Science and Engineering, 2019, 2019, 1.
42 Taheri M, Jahanfar M, Ogino K. Surfaces and Interfaces, 2017, 9, 13.
43 Song B J, Shi Y C, Liu Q D. Polymers for Advanced Technologies, 2020, 31(2), 309.
44 Mo Y Y, Fu Y L. Paint & Coatings Industry, 2009, 39(11), 63 (in Chinese).
莫引优, 符韵林. 涂料工业, 2009, 39(11), 63.
45 Rostami M, Mohseni M, Ranjbar Z. International Journal of Adhesion and Adhesives, 2012, 34, 24.
46 Dashtizadeh A,Abdouss M, Khorassani M, et al. Journal of Plastic Film & Sheeting, 2012, 28(2), 120.
47 Sun D X, Zhang Y H, Shen X. China Coatings, 2006(12), 28 (in Chinese).
孙道兴, 张宜恒, 申新. 中国涂料, 2006(12), 28.
48 Chawla R, Singhal P, Garg A. Journal of the Minerals, Metals & Mate-rials Society, 2019,71, 1634.
49 Liu B L, Wang M Q, Liang Y, et al. Coatings, 2019, 9(6), 348.
50 Adnan A M, Lu C F, Luo X,et al. International Journal of Pavement Engineering, DOI: 10.1080/10298436.2021.2020268.
51 Adnan A M, Lu C F, Luo X, et al. Journal of Materials in Civil Engineering, 2021, 33(11), 0003957.
52 Adnan A M, Luo X, Lu C F, et al. Construction and Building Materials, 2020, 254, 119261.
53 Liu L Q, Guo X F, Shi L, et al. Advanced Composites Letters, 2020, 29, 2633366X20941524.
54 Zhou T, Zhang J, Zhao J G, et al. Surface and Coatings Technology, 2021, 412, 127043.
55 Chen C F, Wang Y L, Pan G Q, et al. Journal of Coatings Technology and Research, 2014, 11(5), 785.
56 Burghardt T E, Maki E, Pashkevich A. Case Studies in Construction Materials, 2021, 14, e00539.
57 Zhang G H, Hummer J E, Rasdorf W. Journal of Transportation Engineering, 2010, 136(8), 773.
58 Nance J, Sparks T D. Progress in Organic Coatings, 2020, 144, 105637.
59 Grosges T. Optical Materials, 2008, 30(10), 1549.
60 He R, Liang Y P, Xie R S, et al. Journal of Chang'an University (Natural Science Edition), 2022, 42(3), 1 (in Chinese).
何锐, 梁映平, 解瑞松, 等. 长安大学学报(自然科学版), 2022, 42(3), 1.
61 Xu J H, Chen C, Wan H, et al. Technology of Highway and Transport, 2017, 33(6), 14 (in Chinese).
徐建晖, 陈诚, 万宏, 等. 公路交通技术, 2017, 33(6), 14.
62 Huang W X, Zeng H P, Yu L, et al. Journal of South China Normal University (Natural Science Edition), 2011(3), 66 (in Chinese).
黄韦星, 曾和平, 余力, 等. 华南师范大学学报(自然科学版), 2011(3), 66.
63 Lyu L, Chen Y X, Yu L T, et al. Materials, 2020, 13(2), 426.
64 Rojas-Hernandez R E, Rubio-Marcos F, Rodriguez M A, et al. Rene-wable and Sustainable Energy Reviews, 2018, 81, 2759.
65 Botterman J, Smet P F. Optics Express, 2015, 23(15), A868.
66 Han S D,Singh K C, Cho T Y, et al. Journal of Luminescence, 2007, 128(3), 301.
67 Zhuang J Q, Xia Z G, Liu H K, et al. Applied Surface Science, 2011, 257(9), 4350.
68 Xia Z G, Li G W, Chen D M, et al. Materials Letters, 2009, 63(29), 2600.
69 Nguyen H D, Lin C C, Liu R S. Angewandte Chemie-International Edition, 2015, 54(37), 10862.
70 Zhang L, Hu J W, Feng M L, et al. New Chemical Materials, 2022, 50(3), 54 (in Chinese).
张丽, 胡建伟, 冯蒙丽, 等. 化工新型材料, 2022, 50(3), 54.
71 Vitola V,Millers D, Bite I, et al. Materials Science and Technology, 2019, 35(14), 1661.
72 Wang C S, Zhang J, Chen J H, et al. International Journal of Biological Macromolecules, 2022, 208, 97.
73 Miao C C, Li Z H, Li K, et al. Progress in Organic Coatings, 2022, 165, 106741.
74 Li F Q, Liang Z, Li Y X, et al. Composites Part B, 2022, 238, 109889.
75 Bao J J, Liu D B, Xie W, et al. Textile Auxiliaries, 2007(3), 27 (in Chinese).
鲍俊杰, 刘都宝, 谢伟, 等. 印染助剂, 2007(3), 27.
76 Wu M J, Ruan J S, Wang X Q, et al. Chemical Propellants & Polymeric Materials, 2011, 9(1), 61 (in Chinese).
吴明江, 阮家声, 王雪琴, 等. 化学推进剂与高分子材料, 2011, 9(1), 61.
77 Zhu K. Study on preparetion and anticorrosion propertiers of acrylate-epoxy resin core-shell emulsion and graphene composites coatings. Ph.D. Thesis, Shaanxi University of Science and Technology, China, 2018 (in Chinese).
朱科. 丙烯酸酯-环氧树脂核壳乳液及石墨烯复合涂料的制备与防腐性能研究. 博士学位论文, 陕西科技大学, 2018.
78 Zhang D B. Synthesis and properties of self cross-linkable core-shell latex at ambient temperature. Ph.D. Thesis, Zhejiang University, China, 2006 (in Chinese).
张继德. 室温交联核/壳结构乳液的制备及其性能研究. 博士学位论文, 浙江大学, 2006.
79 Zhang X Y, Wei X, Chen H Q. Paint & Coatings Industry, 2009, 39(12), 17 (in Chinese).
张心亚, 魏霞, 陈焕钦. 涂料工业, 2009, 39(12), 17.
80 Wang P Z, Wang J H, Wen S G, et al. China Adhesives, 2014, 23(4), 42 (in Chinese).
汪鹏主, 王继虎, 温绍国, 等. 中国胶粘剂, 2014, 23(4), 42.
81 Wu Z M, Zhang S F, He Y F, et al. Fine Chemicals, 2014, 31(5), 649 (in Chinese).
吴战民, 张少飞, 何玉凤, 等. 精细化工, 2014, 31(5), 649.
82 Zhao Q X. Synthesis and properties of waterborne nitrocellulose emulsion based on acrylic copolymer. Ph.D. Thesis, Shaanxi University of Science and Technology, China, 2016 (in Chinese).
赵擎霄. 丙烯酸接枝共聚型水性硝化纤维乳液的合成及性能研究. 博士学位论文, 陕西科技大学, 2016.
83 Liu X D, Chen Z M, Dong J. Applied Chemical Industry, 2007(1), 68 (in Chinese).
刘晓冬, 陈志明, 董劲. 应用化工, 2007(1), 68.
22120007-1184 Sun D X, Ding X B. Electroplating & Finishing, 2008(4), 47 (in Chinese).
孙道兴, 丁小斌. 电镀与涂饰, 2008(4), 47.
85 Song B B, Bao C L, Wang L S, et al. Paint & Coatings Industry, 2011, 41(10), 15 (in Chinese).
宋蓓蓓, 包春磊, 王炼石, 等. 涂料工业, 2011, 41(10), 15.
86 Tan J Q, Liu W Q, Wang H L, et al. Progress in Organic Coatings, 2016, 94, 62.
87 Li T Q, Zhang P A, Chen B, et al. Journal of Applied Polymer Science, 2020, 137(45), e49384.
88 Wang H H, Qin X, Fei G Q, et al. Colloid and Polymer Science, 2018, 296(3), 585.
89 Huang S S, Liu G L, Zhang K K, et al. Chemical Engineering Journal, 2019, 360, 445.
90 Sun Z W, Zhang L L, Zhou Z H. Paint & Coatings Industry, 2005(8), 22 (in Chinese).
孙再武, 张伶俐, 周子鹄. 涂料工业, 2005(8), 22.
91 Huybrechts J,Bruylants P, Kirshenbaum K, et al. Progress in Organic Coatings, 2002, 45(2), 173.
92 Li R Q, Huang T, Gong S L. Journal of Applied Polymer Science, 2020, 137(2), 48278.
93 Wang Y J, Yang J J, Zhang J A, et al. China Adhesives, 2008(11), 51 (in Chinese).
王月菊, 杨建军, 张建安, 等. 中国胶粘剂, 2008(11), 51.
94 Xiao L, Yan D M, Xu W C. Dyestuffs and Coloration, 2017, 54(4), 18 (in Chinese).
肖龙, 鄢冬茂, 胥维昌. 染料与染色, 2017, 54(4), 18.
95 Liang Z. Shanghai Coatings, 2006(5), 6 (in Chinese).
梁哲. 上海涂料, 2006(5), 6.
96 Ding C F, Wang H T, Chen L, et al. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2003(S1), 53 (in Chinese).
丁彩凤, 王海亭, 陈磊, 等. 青岛科技大学学报(自然科学版), 2003(S1), 53.
97 Fatemi S, Varkani M K, Bastani S, et al. Progress in Organic Coatings, 2006, 55(4), 337.
98 Mirabedini S M, Jamali S S, Haghayegh M, et al. Progress in Organic Coatings, 2012, 75(4), 549.
99 Hadizadeh E,Pazokifard S, Mirabedini S M, et al. Progress in Organic Coatings, 2020, 147, 105784.
100 Ronkainen H,Koskinen J, Varjus S, et al. Surface & Coatings Technology, 1999, 122(2), 150.
101 Kircher T A, McMordie B G, Richards K. Surface & Coatings Technology, 1998, 108, 24.
102 Pichavant L, Coqueret X. Progress in Organic Coatings, 2008, 63(1), 55.
103 Taheran M, Navarchian A H, Razavi R S. Progress in Organic Coatings, 2011, 72(3), 486.
104 Hosseini S G, Eslami A. Progress in Organic Coatings, 2010, 68(4), 313.
105 Kardar R,Ebrahimi M, Bastani S, et al. Progress in Organic Coatings, 2008, 64(1), 74.
106 Soucek M D, Johnson A H, Wegner J M. Progress in Organic Coatings, 2004, 51(4), 300.
107 Kuang H Z, Liao Z G, Liu B M. Highway, 2007(9), 85 (in Chinese).
邝宏柱, 廖志高, 柳本民. 公路, 2007(9), 85.
108 Tan Y Q, Xiao S Q, Xiong X T. Journal of Traffic and Transportation Engineering, 2021, 21(4), 32 (in Chinese).
谭忆秋, 肖神清, 熊学堂. 交通运输工程学报, 2021, 21(4), 32.
109 Ahammed M A, Tighe S L. Transportation Research Record, 2009, 2094(1), 112.
110 Burghardt T E, Pashkevich A. Atmospheric Environment, 2018, 193, 153.
111 Parikka-Alhola K, Nissinen A. In:Conference Record of the 3rd International Public Procurement Conference. Amsterdam, 2008, pp. 655.
112 Anthonissen J,Van Troyen D, Braet J, et al. Journal of Cleaner Production, 2015, 102, 96.
113 Burghardt T E, Pashkevich A. Journal of Cleaner Production, 2021, 298, 126521.
114 Faith-Ell C, Balfors B, Folkeson L. Journal of Cleaner Production, 2004, 14(2), 163.
115 Cruz M, Klein A, Steiner V. Transportation Research Procedia, 2016, 14, 869.
116 Wu R R, Xie S D. Environmental Science & Technology, 2017, 51(5), 2574.
117 Luecken D J, Mebust M R. Environmental Science & Technology, 2008, 42(5), 1615.
118 Patel K,Doyle C S, Yonekura D, et al. Surface & Coatings Technology, 2010, 204(21), 3567.
119 Rad A S, Afshar A, Azadeh M. Optical Materials, 2020, 107, 110027.
120 Mirabedini S M,Pazoki S, Esfandeh M, et al. Progress in Organic Coa-tings, 2006, 57(4), 421.
121 Zheng S L,Bellido-Aguilar D A, Hu J, et al. Progress in Organic Coa-tings, 2019, 136, 105265.
122 Chen L J, Shi H X, Wu H K, et al. Journal of Fluorine Chemistry, 2010, 131(6), 731.
123 Bharathidasan T,Kumar S V, Bobji M S, et al. Applied Surface Science, 2014, 314, 241.
124 Yang W R,Zhang K, Yuan J, et al. Road Materials and Pavement Design, 2022, 23(4), 874.
125 Peng C,Chen P X, You Z P, et al. Construction and Building Materials, 2018, 190, 83.
126 Bahlakeh G, Ramezanzadeh B. ACS Applied Materials & Interfaces, 2017, 9(20), 17536.
127 Zhang X,Zhong Y L, Li L, et al. Journal of Applied Polymer Science, 2014, 131(15), 40507.
128 Zhang X, Zhong Y L, Zhang X F, et al. Surface and Interface Analysis, 2013, 45(13), 1893.
129 Wang Z Z, Gu P, Zhang Z. Wear, 2010, 269(1), 21.
130 Carlson P J, Park E S, Andersen S K. Transportation Research Record, 2009, 2107(1), 59.
131 Ozelim L, Turochy R E. Journal of Transportation Engineering, 2014, 140(6), 05014001.
132 Wang C, Wang Z H, Tsai Y C. Transportation Research Record, 2016, 2551(1), 52.
133 Hummer J E, Rasdorf W, Zhang G H. Journal of Transportation Engineering, 2011, 137(10), 705.
134 Sitzabee W E, Hummer J E, Rasdorf W. Journal of Infrastructure Systems, 2009, 15(3), 190.
135 Mull D M, Sitzabee W E. Journal of Transportation Engineering, 2012, 138(5), 618.
136 Mohamed M,Skinner A, Abdel-Rahim A, et al. Journal of Transportation Engineering, Part B: Pavements, 2019, 145(2), 04019003.
137 Elwakil E, Eweda A, Zayed T. Structure and Infrastructure Engineering, 2014, 10(1), 93.
138 Zhang H T, Zhou Y, Cheng P, et al. Journal of Mathematical Chemistry, 2009, 46(4), 1050.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[4] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[5] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[6] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[7] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[8] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[9] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[10] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[11] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[12] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[13] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[14] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[15] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed