Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22080003-8    https://doi.org/10.11896/cldb.22080003
  无机非金属及其复合材料 |
沥青温拌技术分类及温拌效果的试验评价方法
延西利1, 郑涛2,*, 蒋双全1,3, 李卫成4
1 长安大学公路学院,西安 710064
2 四川高速公路建设开发集团有限公司,成都 610041
3 四川公路桥梁建设集团有限公司,成都 610041
4 安康市交通建设投资集团有限公司,陕西 安康 725000
Technique Types of Warm Mix Asphalt and Experimental Methods to Evaluate the Warm Effect
YAN Xili1, ZHENG Tao2,*, JIANG Shuangquan1,3, LI Weicheng4
1 School of Highway, Chang’an University, Xi’an 710064, China
2 Sichuan Expressway Construction & Development Group Co., Ltd., Chengdu 610041, China
3 Sichuan Road and Bridge Construction Group Co., Ltd., Chengdu 610041, China
4 Ankang Transportation Investment Construction and Development Group Co., Ltd., Ankang 725000, Shaanxi, China
下载:  全 文 ( PDF ) ( 2332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青温拌技术日益广泛应用于路面工程,为了定量评价温拌沥青混合料在拌和生产过程中的温拌效果,提供试验评价方法,本研究自主开发了一种沥青混合料变速拌和试验装置,采用70#基质和SBS改性两种沥青、自主研发的一种表面活性剂型沥青温拌剂(取名为Alube)和一种有机降黏型沥青温拌剂(取名为ACMP),以市场成熟产品Evotherm为参照,分别制备了温拌沥青及其AC-13C型混合料,测试了不同沥青和温拌沥青的三大指标、布氏黏度和动态剪切流变指标,分析了沥青的黏温曲线特性,通过混合料的变温击实试验和变速拌和试验,研究了沥青混合料的压实特性和拌和流动特性,提出了沥青混合料的拌和流动模型。研究结果表明,有机降黏型温拌剂减小了沥青的黏度,增大了沥青的流动性,改变了沥青的技术性能,如针入度、延度、相位角等增大,软化点、布氏黏度等减小,而表面活性剂型温拌剂不改变沥青的基本技术性能;黏温曲线法仅可表征有机降黏型温拌沥青的温度变化,等黏温度降低约9 ℃,变温击实法和变速拌和法则可以同时表征两大类温拌剂的温拌效果;沥青混合料的拌和流动性服从宾汉黏塑性模型,从流变理论上解答了混合料的拌和流动性及和易性,推荐采用变速拌和试验来评价温拌沥青混合料的温拌效果;综合考察现有沥青温拌技术可知,在常用温拌剂掺量下,温拌沥青的生产拌和温度可比热拌沥青混合料低20~30 ℃,符合常规认识。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
延西利
郑涛
蒋双全
李卫成
关键词:  道路工程  沥青混合料  沥青温拌技术  试验评价  变速拌和试验  宾汉模型    
Abstract: The warm mix asphalt (WMA) technique has been widely used in pavement engineering. In order to quantitatively evaluate effects of WMA additives on the asphalt mixture mixing process, a variable speed mixing test device for experimental evaluation of asphalt mixture was developed in this study. Newly developed WMA chemical additive (named Alube) and organic additive (named ACMP), and commercially available Evotherm WMA additive, will be used to prepare warm-mixed asphalt binders and the corresponding AC-13C asphalt mixtures. Both penetration grade 70# and SBS modified asphalt binders will be used as the base asphalt for WMA. By evaluating penetration grade, softening point, ductility, Brookfield viscosity and dynamic shear rheological parameters of 70# pen asphalt binder, SBS modified asphalt binder, and three warm-mixed asphalt binders, the viscosity-temperature curve characteristics were evaluated. Based on the compaction test with variable temperatures and mixing test with variable speeds, the compaction characteristic and the mixing flowability of asphalt mixtures were evaluated. The mixing flo-wability model was also developed. The results indicated that organic type WMA additive can reduce the viscosity of asphalt binders, which will increase the flowability of asphalt mixtures. In turn, penetration, ductility, and phase angle of asphalt binders will be increased, while the softening point and Brookfield viscosity will be decreased. On the other hand, the chemical type WMA additive did not change the basic technical properties of asphalt binders. The viscosity-temperature curve can only characterize the temperature variation during mixing process for asphalt mixtures with organic type WMA additive, and the equal-viscosity temperature can be reduced by 9 ℃. The compaction method with variable temperatures and mixing method with variable speeds can simultaneously characterize the effects of both types of WMA additives on mixing process. The mixing flowability of the asphalt mixture can be described by the Bingham’s model, which can well explain the mixing flowability and workability of mixtures based on the rheology theory. Thus, the mixing test with variable speeds is recommended to evaluate the effects of WMA additives on mi-xing process. Based on the up-to-date WMA techniques, the mixing temperature can be reduced by 20 ℃ to 30 ℃ as compared with regular hot mix asphalt if WMA additives are added at common dosage, which agrees with the current main understanding of WMA techniques.
Key words:  road engineering    asphalt mixture    warm mix asphalt technique    experimental evaluation    variable mixing speed test    Bingham’s model
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  U414  
基金资助: 陕西省科技项目(2020GY-304);四川路桥项目(KY2021srbg-10-12);安康市科技项目(AK2021-GY-13)
通讯作者:  *郑涛,四川高速公路建设开发集团有限公司高级工程师,2005年6月毕业于湖北工业大学,获工学学士学位,2008年6月毕业于长安大学,获硕士学位,现为重庆交通大学土木与建筑工程学院博士研究生。主要从事路面结构与材料、路面养护维修新材料新技术等研究和公路工程技术管理等工作。nulizheng@tom.com   
作者简介:  延西利,长安大学教授、博士研究生导师。1986年西安公路学院公路工程专业本科毕业,1988年、1992年法国里昂大学土木工程专业硕士、博士毕业,曾任四川省交通厅副总工程师,2010年于长安大学工作至今。目前主要从事路面结构与材料、道路材料流变学及本构理论、沥青路面再生-温拌-改性技术等方面的研究工作。出版著作《道路材料流变学》,发表论文70余篇,其中EI和SCI检索30多篇。
引用本文:    
延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
YAN Xili, ZHENG Tao, JIANG Shuangquan, LI Weicheng. Technique Types of Warm Mix Asphalt and Experimental Methods to Evaluate the Warm Effect. Materials Reports, 2024, 38(4): 22080003-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080003  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22080003
1 European Asphalt Pavement Association. EAPA-Position paper, Brussels, Belgium, 2014.
2 Capitão S D, Picado-Santos L G, Martinho F. Construction and Building Materials, 2012, 36, 1016.
3 Damm K W, Hinrichsen A J. In: 6th RILEM Symposium-Performance Testing and Evaluation of Bituminous Materials’03. Zurich, 2003, pp. 520.
4 Yan X L, Ai T, Xia Z P, et al. Research and development of surfactant WMA additive and its pavement application technology. Research Report, Department of Transportation of Sichuan Province, China, 2020(in Chinese).
延西利, 艾涛, 夏泽沛, 等. 表面活性剂型沥青温拌剂的研发及应用技术研究. 研究报告, 四川省交通运输厅, 2020.
5 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2020, 33(10), 1.
6 Hunter R N, Self A, Read J. The shell bitumen handbook (sixth ed.), ICE Publishing, London, UK, 2015.
7 Marvillet J, Bougault P. Proceedings of Association of Asphalt Paving Technologists, 1979, 48, 91.
8 Gudimettla J M, Cooley L A, Brown E R. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1891(1), 229.
9 Abed A, Thom N, Grenfell J. Construction and Building Materials, 2019, 200, 80.
10 Wang C, Hao P, Ruan F. Construction and Building Materials, 2013, 48, 1165.
11 Zhao G J, Guo P. Energy Procedia, 2012, 16, 1230.
12 Hou S G. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(5), 36(in Chinese).
侯曙光. 南京工业大学学报(自然科学版), 2011, 33(5), 36.
13 Guo P, Duan L Y. Journal of Shandong Agricultural University (Natural Science Edition), 2012, 43(1), 119(in Chinese).
郭平, 段凌云. 山东农业大学学报(自然科学版), 2012, 43(1), 119.
14 Hurley G C, Prowell B D. Evaluation of Aspha-min® for use in warm mix asphalt, NCAT Report 05-04, USA, 2005.
15 hurley G C, Prowell B D. Evaluation of Sasobit® for use in warm mix asphalt, NCAT Report 05-06, USA, 2005.
16 Hurley G C, Prowell B D. Evaluation of Evotherm® for use in warm mix asphalt, NCAT Report 06-02, USA, 2006.
17 Wu C, Zeng M L, Wang M W, et al. Journal of Hunan University (Natural Science Edition) 2010, 37(8), 1.
18 Chen X, Yang P, Wu Y Z, et al. Journal of Chang’an University (Na-tural Science Edition), 2012, 32(2), 45(in Chinese).
陈骁, 杨平, 吴亚中, 等. 长安大学学报(自然科学版), 2012, 32(2), 45.
19 Yan X L, Yong L M, Yan M L, et al. China Journal of Highway and Transport, 2015, 28(8), 1(in Chinese).
延西利, 雍黎明, 延梦璐, 等. 中国公路学报, 2015, 28(8), 1.
20 Wei J G, Wang Z L, Fu Q L. Journal of Chang’an University (Natural Science Edition), 2013, 33(6), 17(in Chinese).
巍建国, 王兆仑, 付其林. 长安大学学报(自然科学版), 2013, 33(6), 17.
21 Zhang J. Technical performance of the new surfactant-based asphalt warming agent. Master’s Thesis, Chang’an University, China, 2019 (in Chinese).
张进. 新型表面活性剂型沥青温拌剂的技术性能. 硕士学位论文, 长安大学, 2019.
22 Yan X L, Chen S L, An S W, et al. Journal of Traffic and Transportation Engineering, 2017, 17(1), 11(in Chinese).
延西利, 陈四来, 安舒文, 等. 交通运输工程学报, 2017, 17(1), 11.
23 Menapace I, Masad E, Little D, et al. Sustainability, eco-efficiency, and conservation in transportation infrastructure asset management, CRC Press, London, 2014, pp. 157.
24 Kök B V, Yilmaz M, Akpolat M. Construction and Building Materials, 2014, 63, 174.
25 Yan X L, Jing H J, You Q L, et al. China Civil Engineering Journal, 2019, 52(10), 120(in Chinese).
延西利, 景宏君, 游庆龙, 等. 土木工程学报, 2019, 52(10), 120.
26 Yan X L, Tian H L, Yan X L, et al. Journal of Traffic and Transportation Engineering, 2016, 16(3), 1(in Chinese).
延西利, 田辉黎, 延喜乐, 等. 交通运输工程学报, 2016, 16(3), 1.
27 Li X Y, Wang H N, Zhang C, et al. Journal of Testing and Evaluation, 2016, 44, 2219.
28 Kim Y, Lee J, Back C, et al. Advances in Materials Science and Engineering, 2012, 2012, 1.
[1] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[2] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[3] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[4] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[5] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[6] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[9] 房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
[10] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[11] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[12] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[13] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[14] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[15] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed