Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23110085-8    https://doi.org/10.11896/cldb.23110085
  高分子与聚合物基复合材料 |
基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究
周铭钰1, 刘曙光2, 吴超凡3, 刘军2, 张恒龙1,*, 张帅1, 李启石1
1 湖南大学绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南省通泰工程有限公司,长沙 410018
3 湖南交通职业技术学院,长沙 410132
Study on Grade Design and Comparative Performance of Ultra-thin Abrasion Layer Based on Waterborne Epoxy Emulsified Asphalt
ZHOU Mingyu1, LIU Shuguang2, WU Chaofan3, LIU Jun2, ZHANG Henglong1,*, ZHANG Shuai1, LI Qishi1
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, Hunan University, Changsha 410082, China
2 Hunan Tongtai Engineering Co., Ltd., Changsha 410018, China
3 Hunan Communications Engineering Polytechnic, Changsha 410132, China
下载:  全 文 ( PDF ) ( 4489KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为方便在实际工程中选择合适类型的水性环氧乳化沥青超薄磨耗层,本工作采用先乳化后改性的方法制备水性环氧树脂改性乳化沥青。选择AC-10、SMA-10、UWM-10三种不同级配的超薄磨耗层,通过修正的马歇尔试验确定各类型混合料的最佳乳液含量,并通过马歇尔模数、蠕变变形量、破坏拉伸应变、冻融劈裂强度比、动态模量、疲劳寿命次数、构造深度等评价指标对它们的混合料各项性能进行了检验对比。结果表明:超薄磨耗层AC-10、SMA-10、UWM-10的最佳乳液含量分别为8.7%、8.5%和7.6%。相比空白样,水性环氧树脂的加入显著改善了超薄磨耗层混合料的高温稳定性能、抗水损害性能、抗疲劳性能以及抗滑性能。三种超薄磨耗层中,AC-10的低温抗裂性能较强,SMA-10和UWM-10的高温稳定性能和抗疲劳性能较好,与此同时,UWM-10表现出更加优异的抗水损害能力及抗滑性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周铭钰
刘曙光
吴超凡
刘军
张恒龙
张帅
李启石
关键词:  超薄磨耗层  水性环氧树脂  乳化沥青混合料  配合比设计  路用性能    
Abstract: In order to selecta suitable type of water-based epoxy emulsified asphalt ultra-thin wear layer in practical engineering, in this work water-based epoxy emulsified asphalt was prepared by first emulsifying and then modification, Three kinds of ultra-thin wear layers, AC-10, SMA-10, UWM-10, were tested by modified Marshall test to obtain the optimum emulsion content of each type mixture. And then the properties of these ultra-thin wear layers were tested and compared by Marshall modulus, creep deformation, failure tensile strain, freeze-thaw splitting tensile strength ratio, dynamic modulus, fatigue life, structural depth and swing value. The results showed that the optimal emulsion content of AC-10, SMA-10 and UWM-10 ultra-thin wear layer is 8.7%, 8.5% and 7.6%, respectively. Compared between the sample with and without water-based epoxy resin, the addition of water-based epoxy resin should significantly improve the high temperature property, water stability property, fatigue property and skid resistance of the ultra-thin wear layer. Among the three types of ultra-thin wear gradation, AC-10 has stronger low temperature cracking resistance, while SMA-10 and UWM-10 have better high temperature stability and fatigue performance, and UWM-10 also showed better water damage resistance and skid resistance.
Key words:  Ultra-thin wearing course    waterborne epoxy resin    emulsified asphalt mixture    mix design    road performance
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  U414  
基金资助: 国家自然科学基金面上项目(52378449);湖南省交通科技进步与创新计划项目(202248)
通讯作者:  * 张恒龙,湖南大学土木工程学院教授、博士研究生导师。在陕西科技大学取得学士学位、先后在武汉理工大学取得硕士和博士学位。主要研究方向包括新型路面材料的研发与应用、路面材料耐久性理论与技术、废旧路面材料再生利用技术。已发表学术论文120余篇,2020—2022年连续3年入选Elsevier“中国高被引学者”和全球前2%顶尖科学家(Singleyr)。曾获2022年高等教育(本科)国家级教学成果奖二等奖(排名6)、2022年高等教育(研究生)国家级教学成果奖二等奖(排名15)。 302763430@qq.com;hlzhang@hnu.edu.cn   
作者简介:  周铭钰,2021年7月于湖南大学获得工学学士学位。现为湖南大学土木工程学院硕士研究生,在张恒龙教授的指导下进行研究。目前主要研究领域为水性环氧乳化沥青超薄磨耗层的研究。
引用本文:    
周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
ZHOU Mingyu, LIU Shuguang, WU Chaofan, LIU Jun, ZHANG Henglong, ZHANG Shuai, LI Qishi. Study on Grade Design and Comparative Performance of Ultra-thin Abrasion Layer Based on Waterborne Epoxy Emulsified Asphalt. Materials Reports, 2024, 38(24): 23110085-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110085  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23110085
1 Editorial Department of China Highway Journal. China Journal of Highway and Transportation, 2020, 33(10), 1 (in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2020, 33(10), 1.
2 Cui W, Wu K, Cai X, et al. Materials, 2020, 13(1).
3 Zeng M L, Peng L Q, Wu C F, et al. Journal of Wuhan University of Technology, 2012, 34(4), 27. (in Chinese).
曾梦澜, 彭良清, 吴超凡, 等. 武汉理工大学学报, 2012, 34(4), 27.
4 Yu J M, Yang N K, Yu H Y. Journal of Central South University (Natural Science Edition), 2021, 52(7), 2287(in Chinese).
虞将苗, 杨倪坤, 于华洋. 中南大学学报(自然科学版), 2021, 52(7), 2287.
5 Tan Y Q, Yao L, Wang H P, et al. Journal of Harbin Institute of Technology, 2012, 44(12), 73(in Chinese).
谭忆秋, 姚李, 王海朋, 等. 哈尔滨工业大学学报, 2012, 44(12), 73.
6 Chen J, Dan H, Ding Y, et al. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6), 815.
7 Li X, Zhou Z, Ye J, et al. Construction and Building Materials, 2021, 310, 125222.
8 Hu C, Zhao J, Leng Z, et al. Construction and Building Materials, 2019, 197, 220.
9 Zhang Q, Xu Y H, Wen Z G. Construction and Building Materials, 2017, 153, 774.
10 Zhang Y. China and Foreign Highway, 2017, 37(5), 289(in Chinese).
张勇. 中外公路, 2017, 37(5), 289.
11 Gu Y, Tang B, He L, et al. Construction and Building Materials, 2019, 229, 116942.
12 Wang Q Z, Liang Y S, Ma X J, et al. Thermosetting Resins, 2022, 37(3), 13(in Chinese).
王清洲, 梁瑛硕, 马小江, 等. 热固性树脂, 2022, 37(3), 13.
13 Chen Y, Hossiney N, Yang X, et al. Advances in Materials Science and Engineering, 2021, 2021, 1.
14 Zhu C, Zhang H, Guo H, et al. Journal of Cleaner Production, 2019, 217, 95.
15 Zhang R R, Xue Z J, Wang C M, et al. Highway Traffic Science and Technology (Applied Technology Edition), 2016, 12(10), 79(in Chinese).
张荣荣, 薛忠军, 王春明, 等. 公路交通科技(应用技术版), 2016, 12(10), 79.
16 Li Z Z, Chai D R, Geng L, et al. Chinese and Foreign Highways, 2019, 39(1), 243 (in Chinese).
李正中, 柴东然, 耿磊, 等. 中外公路, 2019, 39(1), 243.
17 Li F, Huang S C, Xu J, et al. Journal of Tongji University (Natural Science), 2010, 38(10), 1463 (in Chinese).
李峰, 黄颂昌, 徐剑, 等. 同济大学学报(自然科学版), 2010, 38(10), 1463.
18 Ji J, Liu L H, Suo Z, et al. Journal of Beijing University of Technology, 2018, 44(4), 568(in Chinese).
季节, 刘禄厚, 索智, 等. 北京工业大学学报, 2018, 44(4), 568.
19 Li H. Analysis of viscoelastic mechanical response of asphalt mixture and asphalt pavement under static and dynamic loads. Ph. D. Thesis, Jilin University, China, 2021 (in Chinese).
李赫. 动静荷载作用下沥青混合料及沥青路面黏弹性力学响应分析. 博士学位论文, 吉林大学, 2021.
20 Sun Z, Ma Y, Liu S, et al. Case Studies in Construction Materials, 2022, 16, e00997.
21 Liu M M, Han S, Pan J, et al. Materials Reports, 2018, 32(10), 1716(in Chinese).
刘梦梅, 韩森, 潘俊, 等. 材料导报, 2018, 32(10), 1716.
22 Zhu C F, Cheng Y C, Liang C Y, et al. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1), 165(in Chinese).
朱春凤, 程永春, 梁春雨, 等. 吉林大学学报(工学版), 2020, 50(1), 165.
23 He Q, Zhang H, Li J, et al. Construction and Building Materials, 2021, 291, 123364.
24 Zhang S, Long J, Zhang H L, et al. Journal of Materials in Civil Engineering, 2023, 35(9).
25 Abdukadir A, Pei Z, Yu W, et al. Case Studies in Construction Materials, 2022, 17, e01598.
26 Xiao J J, Sha A M, Jiang W, et al. Journal of Building Materials, 2013, 16(3), 446(in Chinese).
肖晶晶, 沙爱民, 蒋玮, 等. 建筑材料学报, 2013, 16(3), 446.
27 Zhou Z G, Zhou Y, Liu Z R. Materials Reports, 2022, 36(13), 121(in Chinese).
周志刚, 周扬, 刘智仁. 材料导报, 2022, 36(13), 121.
28 Li Y F. Highway Engineering, 2016, 41(5), 82(in Chinese).
李亚菲. 公路工程, 2016, 41(5), 82.
29 Wang J, Zhang H, Zhu C. Construction and Building Materials, 2020, 243, 118307.
30 Qian Z, Meng L. Frontiers of Structural and Civil Engineering, 2017, 11(3), 346.
[1] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[2] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[3] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[4] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[5] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[6] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[7] 龙武剑, 罗盛禹, 程博远, 冯甘霖, 李利孝. 机器学习算法用于自密实混凝土性能设计的研究进展[J]. 材料导报, 2024, 38(11): 22110224-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[10] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[11] 傅豪, 王朝辉, 刘鲁清, 刘伟, 余四新. 路用水性环氧改性乳化沥青组成优化及耐久性能评价[J]. 材料导报, 2023, 37(18): 22010074-9.
[12] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[13] 张怀志, 金鑫, 黎享, 赵天颂. 聚氨酯/环氧树脂基混合料型耐久长效道路交通标线材料组合优化研究[J]. 材料导报, 2023, 37(12): 21120002-13.
[14] 柳力, 朱晓明, 刘朝晖, 李文博, 杨程程, 黄优, 刘磊鑫. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 22080175-7.
[15] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed