Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22060073-9    https://doi.org/10.11896/cldb.22060073
  无机非金属及其复合材料 |
组成及骨料特性对UHPC基体流动性和抗压强度的影响
周敏1,2, 吴泽媚1,2,*, 欧阳雪1,2, 胡翔1,2, 史才军1,2,*
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南省绿色先进土木工程材料国际科技创新合作基地,长沙 410082
Effects of Composition and Aggregate Characteristics on the Flowability and Compressive Strength of UHPC Matrix
ZHOU Min1,2, WU Zemei1,2,*, OUYANG Xue1,2, HU Xiang1,2, SHI Caijun1,2,*
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technologies of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
2 International Science and Technology Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, Changsha 410082, China
下载:  全 文 ( PDF ) ( 8818KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过调整砂胶比和拟合改进的Andreasen-Andersen 颗粒堆积模型,计算得到了UHPC 基体中各固体组分的比例。基于新拌超高性能混凝土(UHPC)基体的湿堆积密度和流动性确定了高效减水剂的最优掺量。研究分析了不同配合比设计参数(砂胶比和胶凝材料组分)、骨料特性(颗粒球形度和圆度)对UHPC基体的流动性和抗压强度的影响。结果表明:当砂胶比从0.8增加为1.2时,掺河砂的UHPC基体的湿堆积密度、流动性和7 d抗压强度逐渐降低;对比调整砂胶比和改变胶凝材料组分的掺量,UHPC基体的流动性和湿堆积密度变化趋势主要受砂胶比影响;当高效减水剂掺量为 0.5%~2.0% 时,UHPC基体的PFT、湿堆积密度和流动性先缓慢升高后迅速下降;骨料形状对UHPC基体的湿堆积密度、流动性和28 d抗压强度的影响较大;在UHPC基体实现紧密堆积后,影响UHPC基体的抗压强度的主要因素为骨料形貌,而胶凝材料组分掺量的影响较小;当骨料最大粒径相同时,增加骨料的球形度和圆度显著增加了UHPC基体的流动性,但降低了UHPC基体的抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周敏
吴泽媚
欧阳雪
胡翔
史才军
关键词:  超高性能混凝土基体  颗粒紧密堆积理论  配合比设计参数  骨料特性  流动性  抗压强度    
Abstract: This paper calculates the proportion of each solid component in the UHPC matrix by adjusting the sand binder ratio and fitting the modified Andreasen and Andersen particle packing model. The optimal superplasticizer dosage in UHPC matrix is determined based on the wet packing density and flowability of fresh mixture. The effects of mixture design parameters (sand binder ratio, cementitious material composition), aggregate characteristics (particle sphericity, and roundness) on the flowability and compressive strength of UHPC matrix are analyzed. Test results show that when the sand binder ratio increases from 0.8 to 1.2, the wet packing density, flowability, and 7 d compressive strength of the UHPC matrix gradually decrease. After the content of cementitious materials is changed by adjusting the sand binder ratio, the flowability and wet packing density of UHPC matrix are mainly affected by the sand binder ratio. When the superplasticizer content was 0.5%—2.0%, the paste film thickness, wet packing density and flowability of UHPC matrix increased slowly and then decreased rapidly. The aggregate shape is the main factor affecting the wet packing density, flowability, and 28 d compressive strength of UHPC matrix. The main factor affecting the compressive strength of UHPC matrix is the aggregate characteristics after the UHPC matrix achieves close packing, while the cementitious material content has little effect. When the maximum particle size of aggregate is the same, the increased sphericity and roundness of crushed aggregate significantly increase the UHPC matrix's flowability while reducing the compressive strength.
Key words:  ultra-high-performance concrete matrix    close particle packing theory    mixture design parameters    aggregate characteristics    flowability    compressive strength
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52008164);中央高校基本科研专项资金(531118010484);国家重点研发计划(2018YFC0705400);湖南省自然科学基金(2022JJ30144)
通讯作者:  *吴泽媚,湖南大学道路与交通工程系教授。2012年于南京航空航天大学硕士毕业,2018年博士毕业于美国密苏里科技大学, 2019年在密苏里科技大学基础设施工程研究中心进行博士后研究。主要研究领域为建筑材料和混凝土结构,包括高与超高性能混凝土(UHPC)组成设计、微观结构、耐久性研究及模拟、混凝土纳米科技、固体废弃物利用等。已发表学术论文50余篇,包括SCI论文30余篇,国际会议论文10余篇,其中第一作者/通信作者SCI论文20余篇。cshi@hnu.edu.cn
史才军,国家特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席、湖南大学985 工程创新平台首席科学家、特聘教授、博士研究生导师。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作7部,中文著作3部,合编国际会议英文论文集6本。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001、2007和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士( Fellow) 。wuzemei@hnu.edu.cn   
作者简介:  周敏,2022年于湖南大学获得硕士学位。主要研究领域为超高性能混凝土。发表SCI一区1篇,EI一篇。
引用本文:    
周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
ZHOU Min, WU Zemei, OUYANG Xue, HU Xiang, SHI Caijun. Effects of Composition and Aggregate Characteristics on the Flowability and Compressive Strength of UHPC Matrix. Materials Reports, 2023, 37(18): 22060073-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060073  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22060073
1 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials, 2015, 101, 741.
2 Federation A A C. Guidelines for UHPC Materials. ACF-120001-2020.Hunan, China, 2020.
3 Institute F S. Ultra-high performance fiber-reinforced concrete (UHPFRC)-specification, production and conformity. NFP 18-470. France, 2017.
4 Engineers J J S O C. Recommendations for design and construction of ultra high strength fiber reinforced concrete structures (Draft). Tokyo, Japan, JSCE, 2004.
5 Wang J, Sun H, Yu L, et al. Construction and Building Materials, 2021, 309, 124959.
6 Abdelrahman M, Xi Y. Construction and Building Materials, 2018, 191, 260.
7 Meddah M S, Zitouni S, Belâabes S. Construction and Building Mate-rials, 2010, 24(4), 505.
8 Haach V G, Vasconcelos G, Lourenço P B. Construction and Building Materials, 2011, 25(6), 2980.
9 Jiao D, Shi C, Yuan Q, et al. Cement and Concrete Composites, 2017, 83, 146.
10 Zhang C, Wang A, Tang M, et al. Cement and Concrete Research, 1996, 26(6), 943.
11 Kwan A K H, Li L G. Construction and Building Materials, 2014, 50, 598.
12 Li L G, Kwan A K H. Cement and Concrete Composites, 2013, 39, 33.
13 Jiao D W, An X P, Shi C J, et al. Journal of the Chinese Ceramic Society, 2017, 45(9), 1360 (in Chinese).
焦登武, 安晓鹏, 史才军, 等. 硅酸盐学报, 2017, 45(9), 7.1360.
14 Jamkar S S, Rao C B K. Cement and Concrete Research, 2004, 34(11), 2021.
15 Cepuritis R, Wigum B J, Garboczi E J, et al. Cement and Concrete Composites, 2014, 54, 2.
16 Donza H, Cabrera O, Irassar E F. Cement and Concrete Research, 2002, 32(11), 1755.
17 Yang R, Yu R, Shui Z, et al. Cement and Concrete Composites, 2019, 99, 203.
18 Özturan T, Çeçen C. Cement and Concrete Research, 1997, 27(2), 165.
19 Wu J, Zhang X, Cen Y, et al. Materials and Structures, 2022,55,126.
20 Abdullahi M. International Journal of Civil and Structural Engineering, 2012, 2, 791
21 Hassan H M Z, Wu K, Huang W, et al. Construction and Building Materials, 2021, 294, 123599.
22 Zhou M, Wu Z, Ouyang X, et al. Cement and Concrete Composites, 2021, 124, 104242.
23 Yu R, Fan D Q, Shui Z H,et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1145 (in Chinese).
余睿, 范定强, 水中和, 等. 硅酸盐学报, 2020, 48(8), 101145.
24 Dingqiang F, Yu R, Kangning L, et al. Construction and Building Materials, 2021, 273, 121698.
25 Wang X, Yu R, Song Q, et al. Cement and Concrete Research, 2019, 126, 105921.
26 Arora A, Yao Y, Mobasher B, et al. Cement and Concrete Composites, 2019, 98, 1.
27 Sadrmomtazi A, Tajasosi S, Tahmouresi B. Construction and Building Materials, 2018, 187, 1103.
28 Stratigraphy and Sedimentation By W. C. Krumbein and L. L. Sloss. viii + 497 pp. 123 figs. W. H. Freeman & Co. San Francisco, 1951. Geological Journal. DOI:10.1002/gj.3350010110.
29 Wu H L, Yu J, Zhang D, et al. Cement and Concrete Composites, 2019, 100, 108.
30 Ragalwar K A, Nguyen H, Ranade R,et al. International Conference on Strain-Hardening Cement-Based Composites.Springer, Dordrecht. DOI:10.1007/978-94-024-1194-2_26.
31 Teng L, Zhu J, Khayat K H, et al. Cement and Concrete Research, 2020, 138, 106238.
32 Wong H H C, Kwan A K H. Materials and Structures, 2008, 41(4), 689.
33 Navarrete I, Kurama Y, Escalona N, et al. Cement and Concrete Research, 2020, 130, 105994.
34 Li L G, Kwan A K H. Construction and Building Materials, 2015, 86, 113.
35 Wong H H C, Kwan A K H. Journal of Materials in Civil Engineering, 2008, 20(2), 189.
36 Yamada K, Takahashi T, Hanehara S, et al. Cement and Concrete Research, 2000, 30(2), 197.
37 GB/T 50090-2016 Standard for Test Method of Performance on Ordinary Fresh Concrete. Beijing, China. 2017.
38 Supervision T J C C G. Method of testing cements-determination of strength, Chinese Standard Institution Press, China, 1999, pp.17671.
39 Kwan A K H, Fung W W S. Cement and Concrete Composites, 2009, 31(6), 349.
40 Khan M Z N, Shaikh F U A, Hao Y, et al. Journal of Materials in Civil Engineering, 2018, 30(2), 04017267.
41 Mora C, Kwan A. Magazine of Concrete Research-MAG CONCR RES, 2001, 53, 91.
42 Fennis S A A M, Walraven J C, Den Uijl J A. Materials and Structures, 2013, 46(4), 639.
43 Kadri E H, Kenai S, Ezziane K, et al. Applied Clay Science, 2011, 53(4), 704.
44 Korpa A, Kowald T, Trettin R. Cement and Concrete Research, 2009, 39(2), 69.
45 Jiao Y, Zhang Y, Guo M, et al. Journal of Cleaner Production, 2020, 277, 123501.
46 Wu J, Zhang X, Cen Y, et al. Materials and Structures, 2022, 55(4), 126.
[1] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[2] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[3] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[4] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[5] 陈汝琪, 张祖华, 史才军. 掺废陶瓷粉对碱激发矿渣早期反应、硬化体强度及收缩性能的影响[J]. 材料导报, 2023, 37(17): 22030249-8.
[6] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[7] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[8] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[9] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[10] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[11] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[12] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[13] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[14] 丁亚文, 肖国庆, 丁冬海, 臧云飞, 陈建军. 晶体硅切割废料对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 材料导报, 2022, 36(6): 21010084-5.
[15] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed