Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22090029-11    https://doi.org/10.11896/cldb.22090029
  无机非金属及其复合材料 |
高温电磁透波材料的研究进展
向天意, 李端*, 李俊生, 王衍飞, 万帆, 刘荣军*
国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
Research Progress of High Temperature Resistant Electromagnetic Wave-transparent Materials
XIANG Tianyi, LI Duan*, LI Junsheng, WANG Yanfei, WAN Fan, LIU Rongjun*
State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 19104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高速飞行器的飞行马赫数不断提高,位于其前端的天线罩部件对高温透波材料提出了迫切需求。本文综述了近年来耐温1 300 ℃以上电磁透波材料体系(包括透波陶瓷增强体、透波陶瓷基复合材料和透波涂层等)以及新型制备工艺(包括快速烧结技术和3D打印技术等)的研究进展,同时介绍了本团队在相关领域的最新研究工作,指出高温透波领域还存在新型连续透波纤维成本高昂、高温透波领域可用材料体系较少及透波材料高温下透波与烧蚀性能演变规律尚不明确等问题,最后对高温透波领域在透波纤维工艺优化、新型高温透波材料预测、透波材料使役性能分析与评估等方面未来的发展趋势做了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向天意
李端
李俊生
王衍飞
万帆
刘荣军
关键词:  天线罩  电磁透波  陶瓷纤维  陶瓷基复合材料  界面    
Abstract: The increasing Mach number of high-speed aircraft provokes an urgent demand for high temperature resistant wave-transparent materials available for radomes. In this review, the research progress on electromagnetic wave-transparent materials with temperature resistance above 1 300 ℃ (including wave-transparent ceramic reinforcements, ceramic matrix composites and coatings) and novel preparation technologies (including rapid sintering and 3D printing methods) in recent years is elaborated. Besides, the research findings of NUDT in aforementioned field are highlighted. Furthermore, remaining problems such as the high cost of novel continuous wave-transparent fibers, the lack of wave-transparent material systems suitable for high temperature environments and the inexplicability of evolutionary mechanisms of their wave-transparent and ablation properties under high temperature are analyzed. Finally, the development trend in high temperature resistance electromagnetic wave-transparent materials, in the terms of optimization of preparation process of wave-transparent fibers, prediction about novel wave-transparent materials and evaluation of their performance, is prospected.
Key words:  radome    electromagnetic wave-transparent    ceramic fiber    ceramic matrix composite    interface
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB32  
基金资助: 国家自然科学基金(52172078)
通讯作者:  *李端,国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室副研究员。博士毕业于瑞典斯德哥尔摩大学。目前主要从事新型电磁结构/功能复合材料、多孔结构/功能陶瓷、陶瓷快烧技术等方面的研究工作。发表论文50余篇,授权国家发明专利20余项。duan_li_2016@163.com
刘荣军,国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室研究员、博士研究生导师。1999年于国防科技大学材料工程与应用化学系本科毕业,2004年于国防科技大学材料科学与工程专业博士毕业并留校工作至今。目前主要从事热结构陶瓷、高温功能复合材料等方面的研究工作。发表论文100余篇,包括Journal of the American Ceramic Society、 Journal of the European Ceramic Society、Corrosion Science、Ceramics International等。rongjunliu@163.com   
作者简介:  向天意,2021年6月于湖南大学获得工学学士学位。现为国防科技大学空天科学学院硕士研究生,在刘荣军研究员和李端副研究员的共同指导下进行研究。目前主要研究领域为高温透波材料。
引用本文:    
向天意, 李端, 李俊生, 王衍飞, 万帆, 刘荣军. 高温电磁透波材料的研究进展[J]. 材料导报, 2023, 37(18): 22090029-11.
XIANG Tianyi, LI Duan, LI Junsheng, WANG Yanfei, WAN Fan, LIU Rongjun. Research Progress of High Temperature Resistant Electromagnetic Wave-transparent Materials. Materials Reports, 2023, 37(18): 22090029-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090029  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22090029
1 Kenion T, Yang N, Xu C. Journal of the European Ceramic Society, 2022, 42, 1.
2 Tang L, Zhang J, Tang Y, et al. Journal of Materials Science & Technology, 2021, 75, 225.
3 Nag A, Rao R R, Panda P K. Ceramics International, 2021, 47, 20793.
4 Kandi K K, Thallapalli N, Chilakalapalli S P R. International Journal of Applied Ceramic Technology, 2015, 12, 909.
5 Li D, Li B, Yang X, et al. Journal of the European Ceramic Society, 2018, 38, 2671.
6 Li M, Zhang C, Ye F, et al. Journal of the European Ceramic Society, 2022, 42, 2146.
7 Chen D R, Han J W, Li S W, et al. Advanced Ceramics, 2018, 39(3), 151 (in Chinese).
陈代荣,韩伟健,李思维,等. 现代技术陶瓷, 2018, 39(3), 151.
8 Zou C, Li B, Meng X, et al. Corrosion Science, 2018, 139, 243.
9 Funayama O, Arai M, Tashiro Y, et al. Journal of the Ceramic Society of Japan, 1990, 98, 104.
10 Hu X, Shao C, Wang J, et al. Journal of Materials Science, 2017, 52, 7555.
11 Hou Y, Li B, Shao C, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2018, 724, 502.
12 Wang Y, Cheng H, Liu H, et al. Ceramics International, 2013, 39, 9229.
13 Almeida R S M, Bergmüller E L, Eggert B G F, et al. Journal of the American Ceramic Society, 2016, 99, 1709.
14 Shi Y, Hönig S, Frieß M, et al. Ceramics International, 2018, 44, 2320.
15 Funayama O, Nakahara H, Tezuka A, et al. Journal of Materials Science, 1994, 29, 2238.
16 Liu Y, Chen K, Peng S, et al. Ceramics International, 2019, 45, 20172.
17 Tan J, Ge M, Yu S, et al. Materials, 2019, 12, 3812.
18 Yun T, Wang J, Li X, et al. Chemistry-A European Journal, 2010, 16, 6458.
19 Mou S, Liu Y, Han K, et al. Ceramics International, 2015, 41, 11550.
20 Liu Y, Peng S, Cui Y, et al. Materials & Design, 2017, 128, 150.
21 Long X, Shao C, Wang Y. Journal of the American Ceramic Society, 2020, 103, 4436.
22 Li W, Wang J, Xie Z, et al. Materials Letters, 2012, 78, 1.
22090029-1023 Lv Z, Cui H, Wang H, et al. Ceramics International, 2017, 43, 10006.
24 Okamura K, Sato M, Hasegawa Y. Ceramics International, 1987, 13, 55.
25 Cao F, Fang Z, Zhang C. Materials & Design, 2013, 43, 258.
26 Kimura Y, Kubo Y, Hayashi N. Composites Science and Technology, 1994, 51, 173.
27 Bernard S, Miele P. Materials, 2014, 7, 7436.
28 Economy J, Anderson R. Inorganic Chemistry, 1966, 5, 989.
29 张铭霞,李勇,齐学礼,等. 中国专利, CN107540382, 2018.
30 Bernard S, Chassagneux F, Berthet M, et al. Journal of the American Ceramic Society, 2005, 88, 1607.
31 Bernard S, Cornu D, Miele P, et al. Journal of Organometallic Chemistry, 2002, 657, 91.
32 Toury B, Bernard S, Cornu D, et al. Journal of Materials Chemistry, 2003, 13, 274.
33 Toutois P, Miele P, Jacques S, et al. Journal of the American Ceramic Society, 2006, 89, 42.
34 Chen M, Ge M, Zhang W. Journal of the European Ceramic Society, 2012, 32, 3521.
35 Xiang Y C, Chen C H, Zeng J C, et al. High Technology Letters, 1998, 8(2), 41 (in Chinese).
向阳春,陈朝辉,曾竟成,等. 高技术通讯, 1998, 8(2), 41.
36 Du Y, Wang B, Meng F, et al. Journal of the American Ceramic Society, 2022, 105, 82.
37 Du Y, Wang B, Li W, et al. Journal of the American Ceramic Society, 2021, 104, 5509.
38 Xu T, Zhang K, Cai Q, et al. Chemical Engineering Journal, 2022, 431, 134118.
39 Sun G, Bi J, Wang W, et al. Ceramics International, 2018, 44, 5002.
40 Iwanaga H, Kawai C. Journal of the American Ceramic Society, 1998, 81, 773.
41 Zhao Y, Dong S, Hu P, et al. Ceramics International, 2021, 47, 14944.
42 Chen F, Li Y, Liu W, et al. Scripta Materialia, 2009, 60, 737.
43 Lei C, Wei F. Journal of Inorganic Materials, 2019, 34(6), 667 (in Chinese).
雷超,魏飞. 无机材料学报, 2019, 34(6), 667.
44 Jiang C, Li B, Zou C, et al. Nanomaterials and Nanotechnology, 2015, 5, 1.
45 Zheng Y, Li D, Li B, et al. Ceramics International, 2018, 44, 5102.
46 Zheng Y Y. Fabrication of silicon nitride nanowires (SNNWs) and SNNWs reinforced ceramic matrix composites (SNNWs/CMCs). Master's Thesis, National University of Defense Technology, China, 2017 (in Chinese).
郑远义. 氮化硅纳米线的合成及其增强陶瓷基复合材料研究. 硕士学位论文, 国防科技大学, 2017.
47 Kim J H, Pham T V, Hwang J H, et al. Nano Convergence, 2018, 5, 17.
48 Golberg D, Bando Y, Huang Y, et al. ACS Nano, 2010, 4, 2979.
49 Liu H K. Synthesis of boron nitride nanotubes and the preparation and performance of BNNTs/Si3N4 wave transparent composites. Master's Thesis, National University of Defense Technology, China, 2014 (in Chinese).
刘海宽. BNNTs的合成及其增强氮化硅基透波复合材料的制备及性能研究. 硕士学位论文, 国防科学技术大学, 2014.
50 Eichler J, Lesniak C. Journal of the European Ceramic Society, 2008, 28, 1105.
51 殷小玮,刘也,刘永胜,等. 中国专利, CN103265303, 2013.
52 Chen M W. Study on preparation and properties of boron nitride ceramic fibers derived from polymeric precursors and BNf/BN composites. Ph.D. Thesis, University of Chinese Academy of Sciences, China, 2012 (in Chinese).
陈明伟. 有机前驱体法BN纤维及BNf/BN复合材料的制备与性能研究. 博士学位论文, 中国科学院大学, 2012.
53 Li D, Zhang C, Li B, et al. Materials Science and Engineering A-Structu-ral Materials Properties Microstructure and Processing, 2011, 528, 8169.
54 Li D, Zhang C, Li B, et al. Materials Letters, 2012, 68, 222.
55 Li D, Li B, Zheng Y, et al. Ceramics International, 2018, 44, 6137.
56 Zou C, Li B, Wang S, et al. Materials & Design, 2016, 92, 335.
57 Zou C, Zhang C, Li B, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 620, 420.
58 郭景坤,黄校先,庄汉锐,等. 中国专利, CN85104097, 1988.
59 徐鸿照,王重海,张铭霞,等. 中国专利, CN102167610, 2012.
60 张立同,刘晓菲,殷小玮,等. 中国专利, CN103804006, 2016.
61 Cui J. Synthesis of silicon nitride nanowires and the preparation of SNNWs/Si3N4 wave transparent composites. Master's Thesis, National University of Defense Technology, China, 2015 (in Chinese).
崔江. 氮化硅纳米线的合成及其增强氮化硅基透波复合材料研究. 硕士学位论文, 国防科学技术大学, 2015.
62 Li J P, Cheng L F, Ye F, et al. Rare Metal Materials and Engineering, 2018(9), 2901 (in Chinese).
李建平,成来飞,叶昉,等. 稀有金属材料与工程, 2018(9), 2901.
63 成来飞,李明星,叶昉,等. 中国专利, CN109320276, 2019.
64 Yu J L, Li S, Lyu Y, et al. Acta Materiae Compositae Sinica, 2015, 32(2), 484 (in Chinese).
余娟丽,李森,吕毅,等. 复合材料学报, 2015, 32(2), 484.
65 Li G Y, Liang Y Y. Aerospace Materials & Technology, 2016, 46(3), 61 (in Chinese).
李光亚,梁艳媛. 宇航材料工艺, 2016, 46(3), 61.
66 程之强,韦其红,王洪升,等. 中国专利, CN109400173, 2019.
67 叶昉,刘永胜,李建平,等. 中国专利, CB107935616, 2021.
68 Meng W W, Ma N, Zhang S W, et al. Journal of Ceramics, 2018, 39(5), 6 (in Chinese).
门薇薇,马娜,张术伟,等. 陶瓷学报, 2018, 39(5), 6.
69 张铭霞,王重海,程之强,等. 中国专利, CN102617177, 2012.
70 Xu Z, Sun X, Xiong K, et al. Ceramics International, 2021, 47, 5896.
71 Yan Y, Mei H, Zhang M, et al. Composites Part A-Applied Science and Manufacturing, 2022, 162, 107127.
72 Liu B, Liu Y, Zhu C, et al. Journal of Materials Science & Technology, 2019, 35, 833.
73 Li J, Zhang C, Li B, et al. Surface & Coatings Technology, 2011, 205, 3736.
74 Rebillat F, Guette A, Brosse C R. Acta Materialia, 1999, 47, 1685.
75 Nyutu E K, Suib S L. Surface and Coatings Technology, 2006, 201, 2741.
76 Li J, Zhang C, Li B. Applied Surface Science, 2011, 257, 7752.
77 Gao S, Li B, Zhang C, et al. Ceramics International, 2017, 43, 10020.
78 Gao S, Li B, Li D, et al. Ceramics International, 2018, 44, 11424.
79 李端,于秋萍. 中国专利, CN111205097, 2020.
80 Sun Z, Li M, Zhou Y. Journal of the European Ceramic Society, 2009, 29, 551.
81 Sun Z, Li M, Zhou Y. International Materials Reviews, 2014, 59, 357.
82 Sun Z Q, Zhou Y C, Wang J Y, et al. Journal of the American Ceramic Society, 2014, 91, 2623.
22090029-1183 Fan X Y, Wang H J, Wen H B, et al. Acta Materiae Compositae Sinica, 2016, 33(5), 1097 (in Chinese).
范星宇,王红洁,温江波,等. 复合材料学报, 2016, 33(5), 1097.
84 Li L Q. Preparation and properties of porous Si3N4-based ceramics with high porosity and their dense coatings. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
李柳青. 高气孔率Si3N4基陶瓷及其表面致密涂层的制备与性能. 硕士学位论文, 哈尔滨工业大学, 2019.
85 Aguirre T G, Cramer C L, Mitchell D J. Journal of the European Ceramic Society, 2022, 42, 735.
86 Tong Z, Ji H, Li X, et al. Journal of the European Ceramic Society, 2020, 40, 4177.
87 Omori M. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2000, 287, 183.
88 Shen Z, Johnsson M, Zhe Z, et al. Journal of the American Ceramic So-ciety, 2002, 85, 1921.
89 Li D, Shen Z. Journal of the American Ceramic Society, 2015, 98, 3631.
90 Li D, Guzi De Moraes E, Guo P, et al. Science and Technology of Advanced Materials, 2016, 15, 45003.
91 李端,李斌,于秋萍,等. 中国专利, CN109231996, 2019.
92 Wang Y, Wang Z, Liu S, et al. Ceramics International, 2019, 45, 21328.
93 Gu Y, Wang G, Duan W Y, et al. Journal of Chinese Ceramic Society, 2021, 49(5), 867 (in Chinese).
顾玥,王功,段文艳,等. 硅酸盐学报, 2021, 49(5), 867.
94 Huang R, Jiang Q, Wu H, et al. Ceramics International, 2019, 45, 5158.
95 Yan P F, Yan B, Wang L F, et al. Metals Materials and Engineering, 2018, 39(6), 12 (in Chinese).
严鹏飞,严彪,王联凤,等. 有色金属材料与工程, 2018, 39(6), 12.
96 Li M, Huang H L, Wu J M, et al. Journal of Inorganic Materials, 2022, 37(3), 310 (in Chinese).
李萌,黄海露,吴甲民,等. 无机材料学报, 2022, 37(3), 310.
97 Chen R, Duan W, Wang G, et al. Journal of the European Ceramic Society, 2021, 41, 5495.
98 Jin H, Jia D, Yang Z, et al. Journal of the European Ceramic Society, 2020, 41, 5495.
99 Fisch M, Armbruster T, Rentsch D, et al. Journal of Solid State Chemistry, 2011, 184, 70.
[1] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[2] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[3] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[4] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[5] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[6] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[7] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[8] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[9] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[10] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[11] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[12] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[13] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[14] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[15] 王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛. 锆钛酸铅压电陶瓷元件高温老化行为及其微观机制[J]. 材料导报, 2023, 37(18): 21110230-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed