Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 22020028-9    https://doi.org/10.11896/cldb.22020028
  无机非金属及其复合材料 |
铣削型钢纤维与超高性能混凝土的界面粘结性能研究
杨医博1,2,*, 夏英淦2, 刘少坤2, 肖祺枫2, 郭文瑛2, 王恒昌2
1 华南理工大学亚热带建筑科学国家重点实验室, 广州 510641
2 华南理工大学土木与交通学院, 广州 510641
Interfacial Bond Performance Between Milling Steel Fiber and Ultra-high Performance Concrete
YANG Yibo1,2,*, XIA Yinggan2, LIU Shaokun2, XIAO Qifeng2, GUO Wenying2, WANG Hengchang2
1 State Key Laboratory of Subtropical Architectural Science, South China University of Technology, Guangzhou 510641, China
2 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 27931KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)优异的性能主要取决于钢纤维与基体的协同工作,为探讨铣削型钢纤维在UHPC中的适用性,本工作通过钢纤维拉拔试验,研究了铣削型钢纤维与UHPC的界面粘结性能,分析了纤维埋深、纤维有无端勾、基体有无纤维、养护条件四个因素的影响及其机理,并与镀铜微丝钢纤维进行对比。结果表明:四种类型的钢纤维(镀铜平直型S、镀铜端钩型H、铣削平直型MS和铣削型MH)在UHPC中的粘结强度大小顺序为H型>MH型>MS型>S型;随着纤维埋深增加,S型、H型和MS型钢纤维在UHPC中的粘结强度减小,而MH型钢纤维则增大;端勾有助于提升钢纤维在UHPC中的粘结强度和拉拔能,并影响拉拔荷载-位移曲线的形状;基体掺入2%(体积分数)钢纤维亦能略微提高钢纤维在UHPC中的粘结强度和拉拔能;与蒸养条件相比,标养条件下界面粘结强度降低,但也使得铣削型钢纤维的拔出行为更明显,提高了拉拔能。铣削型钢纤维与UHPC界面粘结强度较高,但其较低的纤维抗拉强度影响了粘结性能的发挥,建议开发适用于UHPC的高强铣削型钢纤维。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨医博
夏英淦
刘少坤
肖祺枫
郭文瑛
王恒昌
关键词:  超高性能混凝土  铣削型钢纤维  镀铜微丝钢纤维  界面粘结性能    
Abstract: The excellent performance of ultra-high performance concrete (UHPC) mainly depends on the cooperative work between steel fiber and matrix. In order to study the applicability of milling steel fiber in UHPC, the bonding properties between milling steel fiber and UHPC was investigated by steel fibers pullout experiment. Meanwhile, copper coated microfilament steel fiber were used for comparison. The influence and mechanism of four factors (i.e., fiber buried depth, hooked-end, matrix fiber and curing system) on the bonding properties between milling steel fiber and UHPC were analyzed. The result of experiment indicated that the bonding strength of steel fibers (i.e., straight 'S', hooked-end 'H', milling straight 'MS' and milling ‘MH' steel fibers) in UHPC is in the order of H>MH>MS>S. With the increase of fiber buried depth, the bonding strength of S, H and MS steel fiber in UHPC decreases, and MH steel fiber increases by the contrary. The hooked-end is helpful to improve the bonding strength and pullout energy of steel fiber in UHPC, and affects the shape of pullout load-displacement curve. Adding 2vol% steel fiber into the matrix can also slightly improve the bonding strength and pullout energy of steel fiber in UHPC. The bonding strength with standard curing system is lower than that with steam curing system, but it also makes the pullout behavior of milling steel fiber more obvious and improves the pullout energy. The bonding strength between milling steel fiber and UHPC is high, but its low fiber tensile strength affects the bonding perfor-mance. It is suggested to develop high-strength milling steel fiber suitable for UHPC.
Key words:  UHPC    milling steel fiber    copper plated steel fiber    bonding performance of the interface
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TU528  
基金资助: 广东省水利科技创新项目(2017-22);华南理工大学省级大学生创新创业训练计划项目(S202010561255);广东省清远市科技计划项目(2020KJJH014)
通讯作者:  * 杨医博,副教授,硕士研究生导师,2002年获华南理工大学博士学位,主要从事结构耐久性、高性能与超高性能混凝土、固体废弃物综合利用等研究,发表论文100余篇、专著1部,获得国家发明专利授权22项。yangyibo@scut.edu.cn   
引用本文:    
杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
YANG Yibo, XIA Yinggan, LIU Shaokun, XIAO Qifeng, GUO Wenying, WANG Hengchang. Interfacial Bond Performance Between Milling Steel Fiber and Ultra-high Performance Concrete. Materials Reports, 2023, 37(4): 22020028-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020028  或          http://www.mater-rep.com/CN/Y2023/V37/I4/22020028
1 Larrard D F, Sedran T. Cement and Concrete Research , 1994, 24 (6), 997.
2 Yoo D Y, Banthia N. Cement and Concrete Composites, 2016, 73, 267.
3 Ghasemi S, Zohrevand P, Mirmiran A, et al. Engineering Structures, 2016, 113, 186.
4 Allahverdi A, Azimi S A, Alibabaie M. Construction and Building Materials, 2018, 172, 457.
5 Shu G, Zhang Q H, Huang Y, et al. Journal of Southwest Jiaotong University, 2019, 54(6), 1268 (in Chinese).
舒刚, 张清华, 黄云, 等. 西南交通大学学报, 2019, 54(6), 1268.
6 Ju Y, Jia Y D, Liu H B, et al. Science China(Series E), 2007 (11), 1403(in Chinese).
鞠杨, 贾玉丹, 刘红彬, 等. 中国科学(E辑), 2007(11), 1403.
7 Zong X D. Study on the pull-out properties of steel fiber in fiber reinforced cement-based materials, Master's Thesis. Nanjing University of Science and Technology, China, 2004(in Chinese).
宗晓东. 纤维增强水泥基材料中钢纤维拉拔特性的研究. 硕士学位论文, 南京理工大学, 2004.
8 Cheng J, Liu J P, Zhang L H. Concrete and Cement Products, 2016 (5), 62(in Chinese).
程俊, 刘加平, 张丽辉. 混凝土与水泥制品, 2016(5), 62.
9 Soulioti D V, Barkoula N M, Koutsianopoulos F, et al. Construction and Building Materials, 2013, 40, 77.
10 Lin X Y. Research on single steel fiber pullout behavior in UHPC mixed with granite stone powder, Maste's Thesis, Fuzhou University, China, 2017(in Chinese).
林晓溁. 掺花岗岩石粉UHPC单根钢纤维拉拔性能研究. 硕士学位论文, 福州大学, 2017.
11 Yoo D, Gim J Y, Chun B. Journal of Materials Research and Technology, 2020, 9(3), 3632.
12 Zhu P, Chi Y H, Yi D T, et al. Journal of Silicate, 2020, 48 (10), 1669(in Chinese).
朱平, 池颜海, 易笃韬, 等. 硅酸盐学报, 2020, 48(10), 1669.
13 Ye J D, Yang Z J, Liu G H, et al. Journal of Zhejiang University (Engineering Edition), 2018, 52(10), 1911(in Chinese).
叶居东, 杨贞军, 刘国华, 等. 浙江大学学报(工学版), 2018, 52(10), 1911.
14 Tian W L, Wang X W, Li Z X. Journal of Building Materials, 2007(3), 337. (in Chinese).
田稳苓, 王晓伟, 李子祥. 建筑材料学报, 2007(3), 337.
15 Gong C J, Ding W Q. Journal of China Highway, 2017, 30(8), 134(in Chinese).
龚琛杰, 丁文其. 中国公路学报, 2017, 30(8), 134.
16 Gao X. Engineering Construction, 2007(2), 13(in Chinese).
高翔. 工程建设, 2007(2), 13.
17 中国工程建设协会. CECS 13:2009. 纤维混凝土试验方法标准,中国计划出版社, 2009.
18 Alberti M G, Enfedaque A, Gálved J C, et al. Construction and Building Materials, 2016, 112, 607.
19 Deng Y L, Zhang Z H, Shi C J, et al . Engineering, DOI:10.1016/j.eng.2021.11.019.
20 Zhao S J. Study on mechanical properties and microstructure of ultra-high performance cementitious composite, Ph. D. Thesis, Southeast University, China, 2016(in Chinese).
赵素晶. 超高性能水泥基复合材料的力学性能和微结构研究. 博士学位论文, 东南大学, 2016.
21 Wang H, Han S, An M Z, et al. Materials Reports: A Review Papers, 2014, 28(4), 95. (in Chinese).
王华, 韩松, 安明喆, 等. 材料导报:综述篇, 2014, 28(4), 95.
22 Gatty L, Bonnamy S, Feylessoufi A, et al. Journal of Materials Science, 2001, 36(16), 4013.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[3] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[4] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[5] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[6] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[7] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[8] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[9] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[10] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[11] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[12] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[13] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[14] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[15] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed