Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21040093-6    https://doi.org/10.11896/cldb.21040093
  无机非金属及其复合材料 |
不同工艺制度下纳米颗粒对UHPC强度的影响
龙广成1,*, 杨恺1, 程智清1,2, 王慧慧1, 石晔1, 谢友均1
1 中南大学土木工程学院,长沙 410075
2 云南省交通科学研究院有限公司,昆明 650011
Effect of Nano-particles on Strength of UHPC Under Different Process Conditions
LONG Guangcheng1,*, YANG Kai1, CHENG Zhiqing1,2, WANG Huihui1, SHI Ye1, XIE Youjun1
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 Yunnan Academy of Transportation Sciences Co., Ltd., Kunming 650011, China
下载:  全 文 ( PDF ) ( 8351KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为充分发挥纳米颗粒在UHPC中的增强效应,制备更高性能的UHPC,本工作选取纳米SiO2、纳米Al2O3、纳米CaCO3三种颗粒,研究了在20 ℃标养、80 ℃蒸养、180 ℃蒸压养护以及加压成型条件下,上述三种纳米颗粒对UHPC力学强度的影响,并基于微观结构分析探讨了相应机理。结果表明:上述三种纳米颗粒对UHPC抗压强度均有较好的增强效应,三种纳米颗粒在UHPC中的增强效果大小顺序为纳米SiO2>纳米Al2O3>纳米CaCO3;常压振捣密实成型条件下纳米SiO2的最佳掺量约为1.5%(质量分数,下同),加压成型条件下纳米SiO2的最佳掺量约为2.0%;纳米颗粒促进水泥水化的晶核效应和其自身的高化学活性是其在标养条件下显著提高UHPC强度增长率的主要原因;加压成型与蒸汽养护(80 ℃)的共同作用可显著提升掺纳米颗粒UHPC的力学强度;掺入纳米颗粒与采用加压成型工艺均可有效改善UHPC的孔隙结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙广成
杨恺
程智清
王慧慧
石晔
谢友均
关键词:  超高性能混凝土  纳米颗粒  加压成型  养护条件  强度    
Abstract: In order to fully play the enhancement effect of nano-particles on UHPC, the influences of three kinds of nano-particles including nano-SiO2, nano-Al2O3 and nano-CaCO3 on the mechanical strength of UHPC were investigated by a serials of experiments in this work, respectively. And three curing conditions such as standard curing at 20 ℃, steam curing at 80 ℃ and autoclave curing at 180 ℃ as well as the pressure molding process before setting of UHPC were adopted in this experiments. Moreover, the corresponding mechanism was discussed. The results show that nano-SiO2, nano-Al2O3 and nano-CaCO3 all exhibited the good enhancement effect on the compressive strength of UHPC. The enhancement effect of nano-SiO2 on mechanical strength of UHPC was best, which was followed by nano-Al2O3 and nano-CaCO3. The corresponding optimum content of nano-SiO2 was about 1.5wt% under the condition of conventional vibrating compaction and was about 2.0wt% for the condition of pressure molding process. The nucleation effect of nano-particles on promoting hydration of cement and their own high chemical activity were the main reasons for the high strength growth rate of UHPC with nano-particles under standard curing condition. Furthermore, the mechanical strength of UHPC with nano-particles was significantly enhanced by the combination of pressure molding process and steam curing at 80 ℃. Both the incorporation of nano-particles and employment of pressure molding process could effectively improve the pore structure of UHPC.
Key words:  ultra-high performance concrete    nano-particles    pressure molding    curing conditions    strength
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(11790283);云南省科技计划项目(202004AR040022)
通讯作者:  * longguangcheng@csu.edu.cn   
作者简介:  龙广成,2000年于中南大学获土木工程硕士学位,2004年于同济大学获材料学博士学位。现为中南大学土木工程学院教授、博士研究生导师,土木工程材料研究所所长,入选教育部新世纪优秀人才计划。主要从事先进水泥基材料与混凝土耐久性等方面的研究工作;发表学术论文200余篇,出版著作4本,授权国家发明专利20余项,参与获国家科技进步二等奖1项、国家技术发明二等奖1项;兼任中国硅酸盐学报编委、建筑材料学报编委、中国混凝土与水泥制品协会教育与人力资源工作委员会常务理事等。
引用本文:    
龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
LONG Guangcheng, YANG Kai, CHENG Zhiqing, WANG Huihui, SHI Ye, XIE Youjun. Effect of Nano-particles on Strength of UHPC Under Different Process Conditions. Materials Reports, 2022, 36(13): 21040093-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040093  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21040093
1 Arora A, Yao Y M, Mobasher B, et al. Cement and Concrete Composites, 2019, 98, 1.
2 Alkaysi M, Sherif E T, Liu Z C, et al. Cement and Concrete Composites, 2016, 66, 47.
3 Yu R, Spiesz P, Brouwers H J H. Cement and Concrete Composites, 2015, 55, 383.
4 Chen B C, Ji T, Huang Q W, et al. Journal of Architecture and Civil Engineering, 2014, 31 (3), 1 (in Chinese).
陈宝春,季韬,黄卿维,等. 建筑科学与工程学报, 2014, 31(3), 1.
5 Qin W Z, Cao F. Industrial Construction, 1999 (4), 16(in Chinese).
覃维祖,曹峰. 工业建筑, 1999(4), 16.
6 Richard, P. Aci Spring Conversion, 1994,114, 507.
7 Larrard F D. Cement and Concrete Research, 1989, 19(2), 161.
8 Huang Z Y, Cao F L. Materials Reports B:Research Papers, 2012, 26 (9), 136(in Chinese).
黄政宇,曹方良. 材料导报:研究篇, 2012, 26(9), 136.
9 Li W G, Huang Z Y, Cao F L, et al. Construction and Building Mate-rials, 2015, 95, 368.
10 Wu Z M, Khayat K H, et al. Cement and Concrete Research, 2017, 95, 249.
11 Zhu C J, Bai E L, Xu J Y, et al. Bulletin of the Chinese Ceramic Society, 2016, 35 (8), 2575(in Chinese).
朱从进,白二雷,许金余,等. 硅酸盐通报, 2016, 35(8), 2575.
12 Long G C, Shi Y, Ma K L. Advances in Cement Research, 2016, 28(2), 99.
13 Wu Z M, Shi C J, Khayat K H, et al. Construction and Building Mate-rials, 2018, 182, 124.
14 Richard P, Cheyrezy M. Cement and Concrete Research, 1995, 25(7), 1501.
15 Ipek M, Aksu M, Uysal M, et al. Construction and Building Materials, 2015, 79, 90.
16 Ipek M, Aksu M, Yilmaz K, et al. Construction and Building Materials, 2014, 66, 515.
17 Ipek M, Yilmaz K, Uysal M. Construction and Building Materials, 2012, 26(1), 459.
18 Ipek M, Yilmaz K, Mansur S, et al. Construction and Building Mate-rials, 2011, 25(1), 61.
19 Stefanidou M, Papayianni I. Composites Part B (Engineering), 2012, 43(6), 2706.
20 Wei H H. Study oneffect and mechanism of Nano-CaCO3 in cement-based materials. Master's Thesis, Harbin Institute of Technology, China, 2013 (in Chinese).
魏荟荟. 纳米CaCO3对水泥基材料的影响及作用机理研究. 硕士学位论文,哈尔滨工业大学2013.
21 Shi Y, Long G C, Wang S, et al. Journal of Railway Science and Engineering, 2016, 13 (5), 836 (in Chinese).
石晔,龙广成,王申,等. 铁道科学与工程学报, 2016, 13(5), 836.
22 Huang Z Y, Zu T Y. Bulletin of the Chinese Ceramic Society, 2013,32 (6), 1106 (in Chinese).
黄政宇,祖天钰. 硅酸盐通报, 2013, 32(6), 1106.
23 Zhou J, Zheng K R, Liu Z Q, et al. Cement and Concrete Research, 2019, 116, 164.
24 Zhou C S, Ren F, Wang Z, et al. Cement and Concrete Research, 2017, 100, 373.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[4] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[5] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[6] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[9] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[10] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[11] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[12] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[13] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[14] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[15] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed