Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20100044-8    https://doi.org/10.11896/cldb.20100044
  无机非金属及其复合材料 |
基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型
龙朝飞1, 张戎令2, 段运1, 郭海贞3, 肖鹏震1, 段亚伟1
1 兰州交通大学土木工程学院,兰州 730070
2 兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
3 甘肃畅陇公路养护技术研究院有限公司,兰州 730000
Prediction Model of Concrete Strength at Different Molding Temperature Conditions Based on Maturity Theory Under Continuous Negative Temperature
LONG Zhaofei1, ZHANG Rongling2, DUAN Yun1, GUO Haizhen3, XIAO Pengzhen1, DUAN Yawei1
1 College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 National and Local Joint Engineering Laboratory of Road & Bridge Engineering Disaster Prevention Technology Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Gansu Changlong Highway Maintenance Technology Research Institute Co., Ltd., Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 5515KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究低负温下不同入模温度对混凝土强度发展的影响规律,进行了持续负温(-5 ℃)环境和标准养护条件下,四种入模温度工况(5 ℃、10 ℃、15 ℃、20 ℃)对混凝土抗压强度影响的试验分析。结果表明:(1)无论是标准养护还是负温环境下,混凝土的强度均与入模温度呈正相关,入模温度越高,相同龄期下混凝土的强度也越高。(2)负温环境会抑制混凝土强度的发展,使得相同入模温度工况下负温环境中混凝土的强度均低于标准养护下的强度。(3)随着入模温度从5 ℃升高至20 ℃,负温环境下混凝土要达到标养下28 d强度所需的龄期会依次减少7 d,这有利于缩短我国高寒冻土区混凝土工程施工的工期。
基于成熟度理论,分别采用对数、指数和双曲线函数模型分析了持续负温环境下入模温度对混凝土强度的影响规律。通过对比不同模型之间拟合的精度,发现对数模型和双曲线模型拟合精度较高,指数模型拟合精度较差,但对指数模型进行修正后会达到较高的拟合精度。根据三种强度-成熟度模型,进一步建立了持续负温环境下强度-入模温度的对数、指数和双曲线模型。将模型的预测值与实测值进行对比,得出对数模型和双曲线模型可以用来预测混凝土后期的强度,但对其前期强度的预测精度偏低;两类指数模型对混凝土各龄期强度的预测精度均较高,其中第二类指数模型的预测精度最高,可为我国高寒冻土地区不同入模温度工况下混凝土强度的预测提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙朝飞
张戎令
段运
郭海贞
肖鹏震
段亚伟
关键词:  成熟度  入模温度  抗压强度  负温环境  预测模型    
Abstract: In order to study the influence of different molding temperatures on the strength development of concrete under low negative temperature, the influence of four molding temperature conditions (5 ℃, 10 ℃, 15 ℃, 20 ℃) on the compressive strength of concrete under continuous ne-gative temperature (-5 ℃)environment and standard curing conditions was carried out. As the results show, (i) whether it is standard curing or negative temperature environment, the strength of concrete is positively correlated with the molding temperature (the higher the molding temperature, the higher the strength of concrete at the same age); (ii) negative temperature environment will inhibit the development of concrete strength, which makes the strength of concrete in negative temperature environment under the same molding temperature condition lower than that under standard curing; (iii) with the molding temperature increasing from 5 ℃ to 20 ℃, the age required for concrete under negative tempe-rature environment to reach 28 d strength under standard curing will be reduced by 7 d in turn, which is conducive to shortening the construction period of concrete engineering in alpine and frozen soil regions in China.
Based on maturity theory, logarithmic,exponential and hyperbolic function models were used to analyze the influence of molding temperature on concrete strength under continuous negative temperature environment. By comparing the fitting accuracy between different models, it is found that logarithmic model and hyperbolic model have higher fitting accuracy. The fitting accuracy of the exponential model is poor, but the exponential model can be revised to achieve a higher fitting accuracy. According to the obtained three strength-maturity models, the logarithmic, exponential and hyperbolic models of strength-molding temperature under continuous negative temperature were further established. By comparing the predicted value of the model with the measured value, it is concluded that the logarithmic model and the hyperbolic model can be used to predict the la-ter strength of concrete, but the prediction accuracy of the early strength is low. The prediction accuracy of the two types of exponential models for the strength of concrete at different ages is high, and the prediction accuracy of the second type of exponential model is the highest, which can provide reference for the prediction of concrete strength under different molding temperature conditions in alpine permafrost regions of China.
Key words:  maturity    molding temperature    compressive strength    negative temperature environment    prediction model
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TU528  
基金资助: 青年人才托举工程(2015142);长江学者和创新团队发展计划滚动支持(IRT_15R29);国家自然科学基金(52068042;51768033)
通讯作者:  mogzrlggg@163.com   
作者简介:  龙朝飞,兰州交通大学土木工程学院在读硕士研究生,师承张戎令教授,从事西北干寒地区材料耐久性与结构全寿命研究。
张戎令,兰州交通大学教授,加拿大渥太华大学访问学者、英国卡迪夫大学高级研究学者、中国钢结构协会桥梁钢结构分会理事、中国腐蚀与防护学会铁道实施专业委员会委员、中国公路学会青年专家委员会委员,入选中国科协青年人才托举工程、飞天学者特聘计划-青年学者。主要从事西北干寒地区材料耐久性与结构全寿命研究。
引用本文:    
龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
LONG Zhaofei, ZHANG Rongling, DUAN Yun, GUO Haizhen, XIAO Pengzhen, DUAN Yawei. Prediction Model of Concrete Strength at Different Molding Temperature Conditions Based on Maturity Theory Under Continuous Negative Temperature. Materials Reports, 2022, 36(6): 20100044-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100044  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20100044
1 Shi C J, Cao Z J, Xie Z B.Materials Reports A:Review Papers, 2016, 30(12), 96(in Chinese).
史才军, 曹芷杰, 谢昭彬. 材料导报:综述篇, 2016, 30(12), 96.
2 Kim T, Rens K L.Journal of Materials in Civil Engineering, 2008, 20(12), 727.
3 Zhang R W, Wang Q C, Zhang R L, et al. Journal of Railway Science and Engineering, 2018, 15(5), 1147(in Chinese).
张瑞稳, 王起才, 张戎令, 等. 铁道科学与工程学报, 2018, 15(5), 1147.
4 Wang J C, Yan P Y, Han J G. Journal of Building Materials, 2005(4), 446(in Chinese).
王甲春, 阎培渝, 韩建国. 建筑材料学报, 2005(4), 446.
5 Liu R Q. Research on the anti-freeze critical strength of low-temperature concrete influenced by multi-factors. Ph.D. Thesis, Dalian University of Technology, China, 2011(in Chinese).
刘润清. 多因素影响下低温混凝土抗冻临界强度的研究. 博士学位论文, 大连理工大学,2011.
6 Zou C Y, Zhao J, Liang F, et al. Journal of Building Structures, 2008(1), 117(in Chinese).
邹超英, 赵娟, 梁锋, 等. 建筑结构学报, 2008(1), 117.
7 Lee T, Lee J, Choi H. Materials, 2020, 13(7), 1505.
8 Zhang G, Yang Y Z, Li H M.Construction and Building Materials, 2020, 264,120191.
9 Sang Y, Yang Y Z.Construction and Building Materials, 2020, 238,117689.
10 Zhu R, Xu J, Zhan Y J. China Concrete and Cement Products, 2020(10), 21(in Chinese).
朱然, 徐俊, 占羿箭. 混凝土与水泥制品, 2020(10), 21.
11 Dai J P, Wang Q C, Qu S, et al. Journal of Materials Science and Engineering, 2018, 36(2), 263(in Chinese).
代金鹏, 王起才, 屈伸, 等. 材料科学与工程学报, 2018, 36(2), 263.
12 Quan L, Tian B, Feng D C, et al. Journal of Highway and Transportation Research and Development(Applied Technology), 2012, 8(2), 35.
权磊, 田波, 冯德成, 等. 公路交通科技(应用技术版), 2012, 8(2), 35(in Chinese).
13 Kim J K, Han S H, Song Y C. Cement and Concrete Research, 2002, 32(7), 1087.
14 Guan J F, Li Q B, Wu Z M,et al. Journal of Hydraulic Engineering, 2015, 46(8), 951(in Chinese).
管俊峰, 李庆斌, 吴智敏, 等. 水利学报, 2015, 46(8), 951.
15 Gong J W, Zhou Y H, Huang Y Y,et al. Advanced Engineering Sciences, 2012, 44(4), 90(in Chinese).
宫经伟, 周宜红, 黄耀英, 等. 工程科学与技术, 2012, 44(4), 90.
16 Li P P, Fan Z H, Xiong J B, et al. Concrete, 2014(10), 31(in Chinese).
黎鹏平, 范志宏, 熊建波, 等. 混凝土, 2014(10), 31.
17 Zhou Y W, Guo D X, Qiu G Q, et al. Permafrost in China, Science Press, China, 2000, pp. 161 (in Chinese).
周幼吾, 郭东信, 邱国庆, 等. 中国冻土, 科学出版社, 2000, pp. 161.
18 GB50164-2011混凝土质量控制标准. 中国建筑工业出版社, 2011.
19 GB/T 50081-2019混凝土物理力学性能试验方法标准. 中国建筑工业出版社, 2019.
20 Saul A G A. Magazine of Concrete Research, 1951, 2(6), 127.
21 Plowman J M.Magazine of Concrete Research, 1956, 8(22), 13.
22 Topgu I B, Karakurt C, Altun F. Journal of Materials in Civil Enginee-ring, 2007, 19(7), 569.
23 C1074-19 Standard practice for estimating concrete strengthen by the maturity method. West Conshohocken,PA:ASTM International, 2019.
24 JGJ/T 104-2011建筑工程冬期施工规程. 中国建筑工业出版社, 2011.
25 Carino N J.Cement, Concrete and Aggregates, 1984, 6(2), 61.
[1] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[2] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[3] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[4] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[5] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[6] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[7] 魏建峰, 宋铁鹏, 王国承. 钢凝固过程元素偏析和夹杂物生成预报模型研究进展[J]. 材料导报, 2021, 35(Z1): 454-461.
[8] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[9] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[10] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 权长青, 焦楚杰, 杨云英, 郭伟. 油页岩渣对混凝土抗压强度和抗氯离子侵蚀的影响[J]. 材料导报, 2021, 35(22): 22079-22084.
[13] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[14] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[15] 张戎令, 郝兆峰, 祁强, 王起才, 马丽娜, 黄国栋. 考虑温度变化的钢管混凝土徐变试验研究及预测模型[J]. 材料导报, 2021, 35(20): 20028-20034.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed