Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20028-20034    https://doi.org/10.11896/cldb.19050106
  无机非金属及其复合材料 |
考虑温度变化的钢管混凝土徐变试验研究及预测模型
张戎令1, 郝兆峰1, 祁强1, 王起才1, 马丽娜1, 黄国栋1
兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
Prediction Model for Creep of Concrete Filled Steel Tube(CFST) Based on Temperature Variation by Experimental Study
ZHANG Rongling1, HAO Zhaofeng1, QI Qiang1, WANG Qicai1, MA Lina1, HUANG Guodong1
National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 3695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了定量得出实际温度变化对钢管混凝土徐变的影响规律,考虑ACI209徐变模型的计算形式,基于龄期调整的有效模量法,并通过Arrhenius理论引入温度参数,推导得出了考虑温度变化的钢管混凝土热徐变计算公式。并在室内进行了20 ℃恒定温度、季节变温下的钢管混凝土徐变试验。试验结果得出,相对于20 ℃恒温条件下的徐变,温度从20 ℃升高到40 ℃时,徐变应变增长幅度达57.8%;温度从40 ℃升温到60 ℃时,徐变应变增幅达34.1%。变温对钢管混凝土影响较大,处于实际变温环境下的钢管混凝土结构进行徐变设计时,应考虑变温对钢管混凝土徐变的影响。通过试验数据和理论计算值对比得出,理论计算值与试验结果吻合较好,验证了考虑温度影响的徐变预测模型的准确性,可为受实际温度影响的钢管混凝土徐变设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张戎令
郝兆峰
祁强
王起才
马丽娜
黄国栋
关键词:  钢管混凝土  时变温度  徐变  预测模型  试验验证    
Abstract: In order to quantitatively calculate the influence of actual temperature change on the creep of CFST, creep models of the ACI209 are consi-dered, and the temperature parameters are introduced by Arrhenius theory. The formula for calculating the thermal creep of CFST considering temperature changes is derived by the effective modulus method based on age adjustment. The creep test under constant temperature of 20 ℃ and seasonal temperature change is carried out in the laboratory. The test results showed that compared with the creep under the constant temperature of 20 ℃,the growth rate of creep strain is 57.8% when the temperature is raised from 20 ℃ to 40 ℃, and the growth rate of creep strain is 34.1% when the temperature is raised from 40 ℃ to 60 ℃. The temperature change has a great influence on the creep of CFST. The temperature change should be considered when the CFST structure is designed under the actual temperature change environment. The model predictions are in good agreement with the test data by the comparison of the experimental data and the theoretical calculation value. It is indicating that the accuracy of the theoretical prediction of temperature is considered, which can provide reference for the creep design of CFST affected by the actual temperature.
Key words:  concrete filled steel tube    time-varying temperature    creep    prediction model    test verification
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TU398  
基金资助: 国家自然科学基金(51768033;52068042);甘肃省杰出青年基金(21JR7RA344);兰州市科技计划项目资助(2018-4-33)
通讯作者:  mogzrlggg@163.com   
作者简介:  张戎令,教授,博士研究生导师,主要从事西北干寒地区材料耐久性与结构全寿命研究。
引用本文:    
张戎令, 郝兆峰, 祁强, 王起才, 马丽娜, 黄国栋. 考虑温度变化的钢管混凝土徐变试验研究及预测模型[J]. 材料导报, 2021, 35(20): 20028-20034.
ZHANG Rongling, HAO Zhaofeng, QI Qiang, WANG Qicai, MA Lina, HUANG Guodong. Prediction Model for Creep of Concrete Filled Steel Tube(CFST) Based on Temperature Variation by Experimental Study. Materials Reports, 2021, 35(20): 20028-20034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050106  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20028
1 Shao X D, Peng J X, Li L F,et al. Journal of Bridge Engineering,2009,15(1),98.
2 Jin S S, Cha S L, Jung H J. Construction and Building Materials,2018,184,617.
3 Partov D, Kantchev V. Gradevinski Materijali i Konstrukcije,2017,60(2),3.
4 BaŽant Z P, Jirásek M. Basic Properties of Concrete Creep, Shrinkage, and Drying, Springer Science+Business Media,USA,2018.
5 Wang L Y, Guo L, Guo L X. Journal of Building Materials,2014,17(5),896(in Chinese).
汪伦焰,郭磊,郭利霞.建筑材料学报,2014,17(5),896.
6 Zhang R L, Wang Q C, Ma L N, et al. Acta Materiae Compositae Sinica,2017,34(9),2099(in Chinese).
张戎令,王起才,马丽娜,等.复合材料学报,2017,34(9),2099.
7 Cao G H, Hu J X, Zhang K, et al. Journal of Building Materials,2015,36(6),151(in Chinese).
曹国辉,胡佳星,张锴,等.建筑材料学报,2015,36(6),151.
8 Zhang R L, Ma L N, Wang Q C, et al. Materials,2019,12(7),1046.
9 Wendner R, Hubler M H, BaŽant Z P. In: B4 model for multi-decade creep and shrinkage prediction, Ninth International Conference on Creep, Shrinkage, and Durability (CONCREEP-9). Cambridge, Massachusetts, United Stated,2013,pp.429.
10 Rao R, Huang Y H, Liu A R,et al. Journal of Basic Science and Engineering,2014,22(4),775(in Chinese).
饶瑞,黄永辉,刘爱荣,等.应用基础与工程科学学报,2014,22(4),775.
11 Zhang R L, Wang Q C, Ma L N, et al. Journal of Building Materials,2015,18(5),749(in Chinese).
张戎令,王起才,马丽娜,等.建筑材料学报,2015,18(5),749.
12 Du C C, Zou D J, Liu T J,et al. Journal of Building Structures,2016,37(10),169(in Chinese).
杜成成,邹笃建,刘铁军,等.建筑结构学报,2016,37(10),169.
13 Zhang R L, Wang Q C, Ma L N, et al. Journal of Central South University (Science and Technology),2014,45(7),2416(in Chinese).
张戎令,王起才,马丽娜,等.中南大学学报(自然科学版),2014,45(7),2416.
14 Wu W J, Wang Y F, Ma Y S. Journal of Southwest Jiaotong University,2013,48(4),645(in Chinese).
武文杰,王元丰,马伊硕.西南交通大学学报,2013,48(4),645.
15 Peng J X, Shao X D, Cheng X Y, et al. Engineering Mechanics,2007,24(6),79(in Chinese).
彭建新,邵旭东,程翔云,等.工程力学,2007,24(6),79.
16 Shen P S, Fang H. Journal of Railway Science and Engineering,2006,3(1),1(in Chinese).
沈浦生,方辉.铁道科学与工程学报,2006,3(1),1.
17 Wang Y F, Ma Y S, Han B,et al. Journal of Bridge Engineering,2013,18(12),1397.
18 Hauggaard A B, Damkilde L, Hansen P F. Journal of Engineering Mechanics,1999,125(4),458.
19 Rossi P, Tailhan J L, Le M F,et al. Cement and Concrete Research,2012,42(1),61.
20 Wang J Q, Lv P, Xu Q,et al. Engineering Mechanics,2018(S1),156(in Chinese).
汪建群,吕鹏,许巧,等.工程力学,2018(S1),156.
21 Harinadha R D, Ramaswamy A. Heliyon,2018,4(7),1.
22 Wang H Y, Zha X X, Feng W. Advances in Materials Science and Engineering,2016(2),1.
23 Wang Y B, Jia Y, Liao P,et al. Journal of the China Railway Society,2018,40(7),100(in Chinese).
王永宝,贾毅,廖平,等.铁道学报,2018,40(7),100.
24 Carette J, Staquet S. Cement and Concrete Composites,2018,94,62.
25 Guo W Q, Wei Y. Engineering Mechanics,2017,34(3),197(in Chinese).
郭为强,魏亚.工程力学,2017,34(3),197.
26 Torrenti J M. European Journal of Environmental and Civil Engineering,2017,22(12),1.
27 Criel P, Reybrouck N, Caspeele R,et al. Engineering Structures,2017,153,334.
[1] 魏建峰, 宋铁鹏, 王国承. 钢凝固过程元素偏析和夹杂物生成预报模型研究进展[J]. 材料导报, 2021, 35(Z1): 454-461.
[2] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[3] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[4] 陈谦, 王朝辉, 陈渊召, 李振霞, 郭滕滕, 陈海军. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104.
[5] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[6] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[7] 陈邦尚, 陈松, 王岩, 宁聪. 考虑不同应力水平影响的混凝土徐变预测模型修正[J]. 《材料导报》期刊社, 2017, 31(12): 149-153.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed