Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14099-14104    https://doi.org/10.11896/cldb.19050091
  无机非金属及其复合材料 |
基于极限学习机的钢桥面板腐蚀评估及预测
陈谦1, 王朝辉1, 陈渊召2, 李振霞2, 郭滕滕2, 陈海军2
1 长安大学公路学院, 西安 710064
2 华北水利水电大学土木与交通学院, 郑州 450045
Corrosion Assessment and Prediction of Steel Bridge Deck Based on Extreme Learning Machine
CHEN Qian1, WANG Chaohui1, CHEN Yuanzhao2, LI Zhenxia2, GUO Tengteng2, CHEN Haijun2
1 School of Highway, Chang'an University, Xi'an 710064, China
2 School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
下载:  全 文 ( PDF ) ( 4907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 浇注式导电沥青混凝土能够实现桥面及时、高效融雪化冰,但其通电工作时易加速钢桥面板腐蚀,对桥梁服役性能和交通运行安全造成影响。为解决上述问题,本工作设计制备了五种浇注式导电沥青混凝土,测试了浇注式导电沥青混凝土通电工作时流经钢板的电流密度,研究了浇注式导电沥青混凝土类型、工作条件和环境因素对钢板腐蚀的影响规律,并建立了基于极限学习机神经网络的钢板腐蚀程度预测模型,为浇注式导电沥青混凝土融雪化冰技术在钢桥面铺装领域的进一步推广应用奠定了坚实的基础。结果表明:不同因素对钢板腐蚀的影响程度排序为:通电次数>温度>湿度>通电时间,且通电次数和温度在0.05水平上对钢板腐蚀的影响较为显著;与传统神经网络预测模型相比,极限学习机预测模型具有更好的准确性和高效性,其平均绝对误差、平均绝对百分比误差和均方根误差分别比前者低了50.48%、45.89%和49.30%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈谦
王朝辉
陈渊召
李振霞
郭滕滕
陈海军
关键词:  道路材料  浇注式导电沥青混凝土  钢桥面板腐蚀  预测模型  极限学习机    
Abstract: Conductive gussasphalt mixture can melt snow and ice timely and efficiently, but it is easy to accelerate the corrosion of steel deck when it is powered on. It will affect the service performance and traffic safety of bridges. In order to solve the above problems, five kinds of conductive gussasphalt mixtures were designed and prepared. When conductive gussasphalt mixtures were powered on, the current density flowing through the steel plate was tested. The effects of types, working conditions and environmental factors of conductive gussasphalt mixtures on steel plate corrosion were studied. And the prediction model of steel plate corrosion based on the extreme learning machine neural network was established. It lays a solid foundation for the further popularization and application of snow melting technology of conductive gussasphalt mixture in the field of steel bridge deck pavement. The results show that the influence degree order of different factors on steel plate corrosion was ranked as follows: number of time on power>temperature>humidity>electrified time. The influence of number of time on power and temperature on steel plate corrosion were more significant at the level of 0.05. Compared with the traditional neural network prediction model, the extreme learning machine prediction model had better accuracy and efficiency. And its mean absolute error, mean absolute percent error and root mean squared error were 50.48%, 45.89% and 49.30% lower than the former, respectively.
Key words:  road materials    conductive gussasphalt mixture    corrosion of steel bridge deck    prediction model    extreme learning machine
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  U416.21  
  TB332  
基金资助: 长安大学中央高校基本科研业务费专项资金(300102219701;300102219314);河南省2018年科技发展计划——科技攻关项目(182102310028)
作者简介:  陈谦,长安大学公路学院,博士研究生,主要从事绿色道路新材料及新技术的研究,发表学术论文12篇,其中SCI/EI检索10篇;获国家授权专利8项。
王朝辉,长安大学公路学院,教授,博士研究生导师,交通运输科技青年英才,美国俄克拉荷马州立大学访问学者,国际稀浆罩面协会专家委员会成员。2008年7月毕业于长安大学,获工学博士学位。同年加入长安大学公路学院道路研究所工作至今,主要从事绿色道路新材料与新技术的开发及应用、道路预防性养护与决策优化技术等领域的研究。以第一作者/通讯作者发表学术论文90余篇,其中SCI/EI 60余篇;获国家授权发明专利60余项。
引用本文:    
陈谦, 王朝辉, 陈渊召, 李振霞, 郭滕滕, 陈海军. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104.
CHEN Qian, WANG Chaohui, CHEN Yuanzhao, LI Zhenxia, GUO Tengteng, CHEN Haijun. Corrosion Assessment and Prediction of Steel Bridge Deck Based on Extreme Learning Machine. Materials Reports, 2020, 34(14): 14099-14104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050091  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14099
1 Yoon Y, Hastak M. KSCE Journal of Civil Engineering, 2017, 21(1),1.
2 Zhang Z, Hu J, Ma H. International Journal of Pavement Engineering, 2017(6),1.
3 Wang C H, Chen Q, Gao Z W, et al. Materials Reports A: Review Papers, 2017, 31(5),135(in Chinese).
王朝辉, 陈谦, 高志伟,等. 材料导报:综述篇, 2017, 31(5),135.
4 Jia X, Huang B, Chen S, et al. KSCE Journal of Civil Engineering, 2016, 20(7),2755.
5 Wang C H, Yang X, Li Q, et al. Transportmetrica A:Transport Science, 2018, 14(5),1.
6 Pan P, Wu S P, Hu X D, et al. Materials, 2017, 10(3),218.
7 Wang C H, Wang P, Li Y W, et al. Construction and Building Mate-rials, 2015, 80,195.
8 Yang Q, Li X, Wang P. Journal of Central South University, 2013, 20(9),2599.
9 Wang H, Yang J, Liao H, et al. Construction and Building Materials, 2016, 122,184.
10 Liu X, Wang C, Deng Y, et al. Construction and Building Materials, 2016, 115,699.
11 Wang C H, Yang X, Li Q, et al. Transportmetrica A:Transport Science, 2018, 14(5),1.
12 Wang C H, Chen Q, Fu H, et al. Construction and Building Materials, 2018, 172,422.
13 Chen Q, Wang C H, Wen P H, et al. Road Machinery and Construction Mechanization, 2018, 35(9),56(in Chinese).
陈谦, 王朝辉, 问鹏辉, 等. 筑路机械与施工机械化, 2018, 35(9),56.
14 Chen Q, Wang C H, Fan Z T, et al. Materials Reports B: Research Papers, 2019, 33(5),1659(in Chinese).
陈谦, 王朝辉, 樊振通, 等. 材料导报:研究篇, 2019, 33(5),1659.
15 Deng L, Wang W, Cai C S. Engineering Structures, 2017, 133,124.
16 Poyet S, Dridi W, Hostis V L, et al. Corrosion Science, 2017, 125(15),48.
17 Chen Q, Wang C H, Fu H, et al. Construction and Building Materials, 2018, 190,13.
18 Deo R, Birbilis N, Cull J. Corrosion Science, 2014, 80(3),339.
19 Vazquez D R, Villlagran Z Y A, Zega C J, et al. Procedia Materials Science, 2015, 8,73.
20 Chen Q, Wang C H, Wen P H, et al. Journal of Cleaner Production, 2018, 203,633.
21 Shu N, Liu B, Lin W W, et al. Computer Science, 2019, 46(3), 9(in Chinese).
舒娜, 刘波, 林伟伟, 等. 计算机科学, 2019, 46(3),9.
22 Huang G B, Zhou H, Ding X, et al. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2012, 42(2),513.
[1] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[2] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[3] 陈谦, 王朝辉, 樊振通, 侯荣国, 陈姣. 浇注式导电沥青混凝土组合结构热传导效应预估模型[J]. 材料导报, 2019, 33(10): 1659-1665.
[4] 张正一, 韩晓霞, 王朝辉, 孙晓龙. 路用降温涂层在模拟污染工况下的降温性能[J]. CLDB, 2018, 32(8): 1373-1379.
[5] 王朝辉, 陈谦, 高志伟, 蒋婷婷, 陈姣. 浇注式沥青混凝土现状与发展*[J]. CLDB, 2017, 31(9): 135-145.
[6] 张磊, 问鹏辉, 王朝辉, 狄升贯, 殷卫永. 道路非开挖注浆加固补强材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 98-105.
[7] 陈邦尚, 陈松, 王岩, 宁聪. 考虑不同应力水平影响的混凝土徐变预测模型修正[J]. 《材料导报》期刊社, 2017, 31(12): 149-153.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed