Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4099-4104    https://doi.org/10.11896/cldb.19100009
  无机非金属及其复合材料 |
核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究
张戎令1,2, 郝兆峰1, 王起才1, 马丽娜1, 吕文达3, 李文波4
1 兰州交通大学土木工程学院,兰州 730070
2 兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室, 兰州 730070
3 兰州铁道设计院有限公司,兰州 730000
4 中铁二十一局集团有限公司,兰州 730070
Research on Influence Law and Prediction Model of Core Concrete Defects on Creep of Concrete-filled Steel Tube Members
ZHANG Rongling1,2, HAO Zhaofeng1, WANG Qicai1, MA Lina1, LYU Wenda3, LI Wenbo4
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 National and Local Joint Engineering Laboratory of Road and Bridge Engineering Disaster Prevention Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Lanzhou Railway Design Institute Co., Ltd., Lanzhou 730000, China
4 China Railway 21st Bureau Group Co., Ltd., Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 3122KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了合理地预测含有缺陷的钢管混凝土构件徐变变化规律,进行了四种缺陷工况下钢管混凝土徐变试验,分析了国内外不同徐变预测模型对钢管混凝土缺陷构件的适用性。研究结果表明:受压过程中,空洞缺陷周围混凝土微裂缝不断产生与扩张,造成混凝土错位滑移,增大了钢管混凝土的附加变形;脱粘缺陷阻碍了钢管与核心混凝土之间的应力重分布作用,削弱了钢管与混凝土的相互作用效果,增大了核心混凝土的徐变变形;无缺陷及空洞缺陷时,ACI209模型计算所得理论值与钢管混凝土徐变实测值最为接近;脱粘缺陷时,B3模型计算所得理论值与钢管混凝土徐变实测值最为接近;针对不同的缺陷类型,提出了修正模型,大大提高了钢管混凝土缺陷构件的徐变预测精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张戎令
郝兆峰
王起才
马丽娜
吕文达
李文波
关键词:  钢管混凝土  缺陷  徐变  预测模型    
Abstract: In order to reasonably predict the creep law of concrete-filled steel tube members containing defects, creep tests of concrete-filled steel tube under four defect conditions were carried out, and the applicability of different creep prediction models for concrete-filled steel tube members at home and abroad was analyzed. The results show that in the process of compression, the micro-cracks of concrete around the cavity defects constantly occur and expand, causing the dislocation and slippage of concrete and increasing the additional deformation of concrete-filled steel tube. The debonding defect hinders the stress redistribution between the steel tube and the core concrete, weakens the interaction between the steel tube and the concrete, and increases the creep deformation of the core concrete. In the absence of defect and cavity defect, the theoretical value calculated by ACI209 model is closest to the measured value of concrete-filled steel tube creep. In the case of deboning defect, the theoretical value calculated by B3 model is closest to the measured value of concrete-filled steel tube creep. According to different defect types, a modified model is proposed, which greatly improves the accuracy of creep prediction of concrete-filled steel tube (CFST).
Key words:  concrete-filled steel tube(CFST)    defect    creep    prediction model
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TU398.9  
基金资助: 国家自然科学基金(51768033;52068042);长江学者和创新团队发展计划滚动支持(IRT_15R29)
通讯作者:  mogzrlggg@163.com   
作者简介:  张戎令,兰州交通大学教授,博士研究生导师,主要从事西北干寒地区材料耐久性与结构全寿命研究。
郝兆峰,2018年9月至今在兰州交通大学攻读硕士学位,主要从事钢混组合结构力学性能研究。
引用本文:    
张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
ZHANG Rongling, HAO Zhaofeng, WANG Qicai, MA Lina, LYU Wenda, LI Wenbo. Research on Influence Law and Prediction Model of Core Concrete Defects on Creep of Concrete-filled Steel Tube Members. Materials Reports, 2021, 35(4): 4099-4104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100009  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4099
1 Wang Y F.Concrete filled steel tube creep, Science Press, China, 2013(in Chinese).
王元丰.钢管混凝土徐变理论, 科学出版社, 2013.
2 Wang Y B, Jia Y, Liao P, et al.Journal of the China Railway Society, 2018, 40(7), 100(in Chinese).
王永宝, 贾毅, 廖平, 等.铁道学报, 2018, 40(7), 100.
3 Geng Y, Zhao M Z, Yang H, et al. Cement and Concrete Composites, 2019, 103, 303.
4 Deng Y F. The concrete shrinkage and creep analysis of the long span continuous rigid frame bridge. Master's Thesis, Zhejiang University, China, 2018(in Chinese).
邓宜峰. 大跨连续刚构桥混凝土收缩徐变效应分析.硕士学位论文, 浙江大学, 2018.
5 Wang T. Research on creep behavior of ultra-high strength concrete with PVA fiber under long-term load based on early age loading. Master's Thesis, Shenzhen University, China, 2017(in Chinese).
王涛. 基于早龄期加载的PVA纤维超高强混凝土长期荷载作用下的徐变性能研究.硕士学位论文, 深圳大学, 2017.
6 Bazant Z P, Murphy W P. Materials and Stuctures, 1995, 28, 357.
7 Gardner N J, Lockman M J.ACI Materials Journal, 2001, 98(2), 159.
8 Liu W, Liu Q X, Ai W B, et al.Journal of Building Structures, 2019, 40(6), 175(in Chinese).
刘伟, 刘琼祥, 艾武波, 等.建筑结构学报, 2019, 40(6), 175.
9 Zhang R L, Wang Q C, Ma L N, et al.Acta Materiae Compositae Sinica, 2017, 34(9), 2099(in Chinese).
张戎令, 王起才, 马丽娜, 等.复合材料学报, 2017, 34(9), 2099.
10 Zhang R L, Wang Q C, Ma L N, et al.Journal of Building Materials, 2015, 18(5), 749(in Chinese).
张戎令, 王起才, 马丽娜, 等.建筑材料学报, 2015,18(5), 749.
11 Zhang R L, Wang Q C, Ma L N, et al.Journal of Central South University(Science and Technology), 2014, 45(7), 2416(in Chinese).
张戎令, 王起才, 马丽娜, 等.中南大学学报(自然科学版), 2014, 45(7), 2416.
12 Zhang R L, Ma L N, Wang Q C,et al. Materials, 2019, 12(7), 1046.
13 Geng Y, Wang Y Y, Chen J.Journal of Constructional Steel Research, 2016, 122, 455.
14 Luo K, Pi Y L, Gao W, et al. Journal of Constructional Steel Research, 2015, 104, 127.
15 Wang Y Y, Geng Y, Zhang S M.Journal of Tianjin University, 2011, 44(12), 1075(in Chinese).
王玉银, 耿悦, 张素梅.天津大学学报, 2011, 44(12), 1075.
16 Chen B C.Concrete-filled steel tube arch bridge, China Communications Press, China, 2007(in Chinese).
陈宝春.钢管混凝土拱桥, 人民交通出版社, 2007.
17 Zhao Z.Study on shrinkage and creep of concrete filled steel tube. Master's Thesis, Southwest Jiaotong University, China, 2016(in Chinese).
赵哲. 钢管混凝土收缩徐变性能研究.硕士学位论文, 西南交通大学, 2016.
18 Peng J X, Shao X D, Cheng X Y, et al.Engineering Mechanics, 2007(6), 79(in Chinese).
彭建新, 邵旭东, 程翔云, 等.工程力学, 2007(6), 79.
[1] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[2] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[3] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[4] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[5] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[6] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[7] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[8] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[9] 朱红梅, 李佐光, 邱长军, 毛哲华, 秦经刚. 超导材料辐照效应的研究进展[J]. 材料导报, 2020, 34(15): 15116-15125.
[10] 陈怡, 邹文兵, 郭龙涛, 杨春利. 铸造镁合金的焊接修复技术研究现状及发展方向[J]. 材料导报, 2020, 34(15): 15126-15131.
[11] 陈谦, 王朝辉, 陈渊召, 李振霞, 郭滕滕, 陈海军. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104.
[12] 梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
[13] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[14] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[15] 王子云, 赵鹏越, 郭永博, 张凯, 王康. 梯度纳米多晶铜纳米切削过程的分子动力学仿真[J]. 材料导报, 2019, 33(Z2): 419-423.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed