Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5127-5132    https://doi.org/10.11896/cldb.18110095
  金属与金属基复合材料 |
激光红外热成像技术在材料缺陷检测中的研究和应用现状
王博正1, 董丽虹2, 王海斗2, 康嘉杰1, 郭伟2, 向明2
1 中国地质大学(北京)工程技术学院,北京 100083;
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Research and Application of Laser Infrared Thermography in Material Defect Detection
WANG Bozheng1, DONG Lihong2, WANG Haidou2, KANG Jiajie1, GUO Wei2, XIANG Ming2
1 School of Engineering and Technology, China University of Geosciences, Beijing 100083, China;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 3079KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在工业生产过程中,及时发现材料服役过程中产生的缺陷至关重要。相较于涡流、渗透等传统检测手段和超声、闪灯等激励的主动红外检测技术,激光红外热成像技术不仅具有无需接触、无污染、检测效率高、可在线检测等优点,还具有能量密度高及可对微小区域输入高强度能量的特有优势,可以远距离检测材料的微小缺陷。
  然而,由于利用激光的主动激励进行缺陷检测,需要热量在材料表面或近表面堆积,并被热像仪捕捉后经处理成像。因此,对于低发射率、低吸收率的材料,激光红外热成像技术效果往往不尽人意。同时,对于材料缺陷特征的表征是研究的热点与难点,特别是针对难以表征的深度特征,研究者往往通过图像处理、工艺方法进行缺陷特征的定量识别与定性表征。此外,对于金属材料的研究比较深入,特别是金属材料表面裂纹的检测,因此对表面裂纹缺陷特征的表征比较完善。而对复合材料以及陶瓷材料等其他材料缺陷检测的研究,近年来才逐渐增多,对复合材料分层、粘脱等缺陷的表征仍有不足,需要提出新的特征参数来完善。
  近年来,激光红外热成像检测材料缺陷的研究成果突增,检测对象逐渐扩宽,不再局限于金属材料,对复合材料、陶瓷材料以及半导体等材料缺陷的研究不断增多。对缺陷的表征,也从定性识别转变到定量表征。
  本文综述了激光点、线、面激励方式下的激光红外热成像技术,阐述了激光红外热成像的检测原理,介绍了该技术对金属材料、复合材料、陶瓷材料以及其他类型材料缺陷检测的研究现状及应用,并总结了该技术的进一步发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博正
董丽虹
王海斗
康嘉杰
郭伟
向明
关键词:  激光红外  热成像  材料缺陷  缺陷检测    
Abstract: In the industrial production process, it is important to find out the defects generated during the service of the materials in time. Compared with traditional detection methods such as eddy current and infiltration, and active infrared detection technology such as ultrasonic and flashing lights, laser infrared thermography not only has the advantages of no contact, no pollution, high detection efficiency, online detection, etc., but also has the unique advantage of high energy density and high-intensity energy input to small areas, allowing for the detection of small defects in materials over long distances.
  However, since the defect detection is performed by the active excitation of the laser, heat is required to be accumulated on the surface or near the surface of the material, and is captured by the thermal imager and imaged after processing. Therefore, for low emissivity, low absorptivity materials, laser infrared thermography is often unsatisfactory. At the same time, the characterization of material defects is a hotspot and a difficult point in research, especially the depth features that are difficult to characterize. Researchers often use the image processing and process met-hods to quantitatively identify and characterize defect features. In addition, the research on metal materials is more in-depth, especially the detection of surface cracks of metal materials, so the surface crack defects are more perfect. However, the research on the detection of defects in other materials such as composite materials and ceramic materials has gradually increased in recent years. There are still insufficient deficiencies in the delamination and adhesion of composite materials, and new feature parameters need to be proposed to improve.
  In recent years, the research results of laser infrared thermography to detect material defects have increased dramatically, and the detection objects have gradually widened, no longer limited to metal materials, and research on material defects such as composite materials, ceramic materials and semiconductors has been increasing. The characterization of defects is also shifting from qualitative identification to quantitative characterization.
  This paper reviews laser infrared thermography under laser point, line and surface excitation modes. The detection principle of laser infrared thermography is expounded. The research status and application of this technology on metal, composite, ceramic materials and other types of material defect detection are introduced, and the further development direction of this technology is summarized.
Key words:  laser infrared    thermography    material defect    defect detection
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(51675532;51535011)
通讯作者:  lihong.dong@126.con   
作者简介:  王博正,中国地质大学(北京)技术工程学院硕士研究生,在陆军装甲兵学院装备再制造技术国防科技重点实验室联合培养。在王海斗研究员、董丽虹副研究员以及康嘉杰副教授的指导下进行研究。主要研究领域为红外无损检测;董丽虹,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员,博士研究生导师。研究方向为无损检测及再制造寿命评估。发表论文30余篇;王海斗,陆军装甲兵学院装备再制造技术国防科技重点实验室常务副主任,研究员、博士研究生导师,主要从事再制造工程、表面工程研究。国防973计划首席科学家,国家杰出青年科学基金获得者。
引用本文:    
王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
WANG Bozheng, DONG Lihong, WANG Haidou, KANG Jiajie, GUO Wei, XIANG Ming. Research and Application of Laser Infrared Thermography in Material Defect Detection. Materials Reports, 2020, 34(5): 5127-5132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110095  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5127
1 Maldague X. Materials Evaluation, 2002, 60(9), 1060.
2 Yang R, He Y. Infrared Physics & Technology, 2016, 75, 26.
3 He Y, Gui Y T, Pan M, et al. Corrosion Science, 2014, 78(1), 1.
4 Park H, Choi M, Park J, et al. Infrared Physics & Technology, 2014, 62, 124.
5 Jiang Y L. Phase-locked laser infrared non-destructive testing technology research and system development. Master’s Thesis, Capital Normal University, China, 2014(in Chinese).
蒋玉龙. 激光锁相红外无损检测技术研究及系统研制. 硕士学位论文, 首都师范大学, 2014.
6 Gong J L. Reserch on the technology of CFRP laminate defect and fiber orientation detection using infrared thermal wave radar imaging. Ph.D. Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
龚金龙. CFRP层板缺陷与铺层方向的红外热波雷达成像检测技术研究. 博士学位论文,哈尔滨工业大学, 2016.
7 Wang X N. Key technologies in improving the SNR of the laser thermography detection. Master’s Thesis, China Jiliang University, China, 2016(in Chinese).
王晓宁. 激光热成像检测中信噪比改善若干关键技术. 硕士学位论文, 中国计量学院, 2016.
8 Guo W, Dong L H, Xu B S, et al. Nondestructive Testing, 2016, 38(4), 58(in Chinese).
郭伟, 董丽虹, 徐滨士,等. 无损检测, 2016, 38(4), 58.
9 Kubiak E J. Applied Optics, 1968, 7(9), 1743.
10 Wang Y Q, Kuo P K, Favro L D, et al. In: Review of Progress in Quantitative Nondestructive Evaluation. New York, 1990, pp. 511.
11 Gruss C, Balageas D. In: Conference on Quantitative Infrared Thermography.Paris,1992, pp. 7.
12 Bai F M, Sun F G, Huang Y S. Journal of Changchun University of Scie-nce and Technology(Social Sciences Edition), 1999(2), 37(in Chinese).
柏逢明, 孙福贵, 黄永寿.长春理工大学学报(社会科学版), 1999(2), 37.
13 Pech-May N W, Oleaga A, Mendioroz A, et al. Journal of Nondestructive Evaluation, 2016, 35(2), 22.
14 Rashed A, Almond D P, Rees D A S, et al. In: 33rd Annual Review of Progress in Quantitative Nondestructive Evaluation. Portland, 2007, pp. 500.
15 Weekes B, Cawley P, Almond D P, et al. In: 36th Annual review of Progress in Quantitative Nondestructive Evaluation. Kingston,2010,pp. 490.
16 Mezghani S, Perrin E, Vrabie V, et al. Infrared Physics & Technology, 2016, 76, 393.
17 Tang Q, Bu C, Liu Y, et al. Infrared Physics & Technology, 2015, 68, 173.
18 Burrows S E, Dixon S, Pickering S G, et al. NDT & E International, 2011, 44(7), 589.
19 Schlichting J, Ziegler M, Dey A, et al. Quantitative Infrared Thermography Journal, 2011, 8(1), 119.
20 Li T, Almond D P, Rees D A S. In: 37th Annual Review of Progress in Quantitative Nondestructive Evaluation. San Diego,2011, pp. 407.
21 Li T, Almond D P, Rees D A S. Measurement Science & Technology, 2011, 22(3), 407.
22 Yang J, Hwang S, An Y K, et al. Journal of Materials Processing Technology, 2016, 229, 94.
23 Pei C, Qiu J, Liu H, et al. Fusion Engineering & Design, 2016, 109, 1237.
24 Qiu J, Pei C, Liu H, et al. NDT & E International, 2017, 92, 213.
25 Semerok A, Jaubert F, Fomichev S V, et al. Nuclear Instruments & Methods in Physics Research, 2012, 693, 98.
26 Semerok A, Fomichev S V, Jaubert F, et al. Nuclear Instruments & Methods in Physics Research A, 2014, 738(738), 25.
27 An Y K, Ji M K, Sohn H. NDT & E International, 2014, 65(5), 54.
28 Schlichting J, Ziegler M, Maierhofer C, et al. In: 18th World Confe-rence on Nondestructive Testing. Durban, 2012, pp. 499.
29 An Y K, Ji M K, Sohn H. Key Engineering Materials, 2013, 558(5), 76.
30 Fedala Y, Streza M, Sepulveda F, et al. Journal of Nondestructive Eva-luation, 2014, 33(3), 335.
31 Burrows S E, Rashed A, Almond D P, et al. Nondestructive Testing and Evaluation, 2007, 22(2-3), 217.
32 Li T, Rees D A S, Almond D. Plos One, 2009, 6(10), 1.
33 Burrows S E, Dixon S, Li T, et al. In: 36th Annual Review of Progress in Quantitative Nondestructive Evaluation. Kingston,2010, pp. 510.
34 Li T, Almond D P, Rees D A S, et al. In: 36th Annual Review of Progress in Quantitative Nondestructive Evaluation. Kingston, 2010, pp. 435.
35 Li T, Almond D P, Rees D A S, et al. In: 15th International Conference on Photoacoustic and Photothermal Phenomena. Leuven, 2010,pp. 1.
36 Weekes B, Cawley P, Almond D P, et al. In: 36th Annual Review of Progress in Quantitative Nondestructive Evaluation. Kingston,2010, pp. 490.
37 Li T, Almond D, Rees D AS. NDT & E International, 2011, 44(2), 216.
38 Schlichting J, Maierhofer C, Kreutzbruck M. NDT & E International, 2012, 45(1), 133.
39 Myrach P, Ziegler M, Maierhofer C, et al. In: 10th International Confe-rence on Barkhausen and Micro-Magnetics. Baltimore, 2014, pp. 1624.
40 Fedala Y, Streza M, Roger J, et al. Journal of Physics D Applied Phy-sics, 2014, 47(46).
41 Qiu J, Pei C, Liu H, et al. International Journal of Fatigue, DOI: 10.1016/j.ijfatigue.2017.02.027.
42 Beuve S, Qin Z, Roger J P, et al. Sensors & Actuators A Physical, 2016, 247, 494.
43 Boué C, Holé S. Measurement Science & Technology, 2017, 28(6),1.
44 Vandone A, Rizzo P, Vanali M. In: Proceedings of the SPIE. Washington, 2012, pp. 41.
45 Keo S A, Brachelet F, Breaban F, et al. Composites Part B, 2015, 69, 1.
46 Zhang H, Yu L, Hassler U, et al. Composites Science & Technology, 2016, 126, 17.
47 Zhang H, Fernandes H, Djupkep Dizeu F B, et al. Applied Optics, 2016, 55(34),1.
48 Hwang S, An Y K, Sohn H. Procedia Engineering, 2016, 188, 225.
49 Montinaro N, Cerniglia D, Pitarresi G. Composites Part B Engineering, 2017, 108, 164.
50 Montinaro N, Cerniglia D, Pitarresi G. Composite Structures, 2017, 171, 63.
51 Montinaro N, Cemiglia D, Pitarresi G. In: IEEE International Workshop on Metrology for Aerospace. Padua, 2017, pp. 206.
52 Montinaro N, Cerniglia D, Pitarresi G. Journal of Nondestructive Evaluation, 2018, 37(3), 41.
53 Munz D, Fett T. Annales De Chimie Science Des Matériaux, 1999, 25, 75.
54 Perrichon A, Liu B, Chevalier J, et al. Materials, 2017, 10(6), 569.
55 Dragan R G, Rosca I C, Keo S A, et al. In: The 4th IEEE International Conference on E-Health and Bioengineering. New York, 2014, pp. 1.
56 Roemer J, Lukasz Pieczonka, Uhl T. In: International Congress on Technical Diagnostic. Gliwice, 2016, pp. 159.
57 Roemer J, Pieczonka L, Juszczyk M, et al. Archives of Metallurgy & Materials, 2017, 62(4), 2133.
58 Skala J, Svantner M, Tesar J, et al. Applied Optics, 2016, 55(34), 60.
59 An Y K, Yang J, Hwang S, et al. Optics & Lasers in Engineering, 2015, 73(1), 128.
60 Yang J, Choi J, Hwang S, et al. Measurement Science & Technology, 2016, 27(8), 1.
[1] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed