Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1449-1454    https://doi.org/10.11896/cldb.17100259
  材料与可持续发展(二)——材料绿色制作与加工* |
TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析
邓云华1, 陶军1, 马旭颐2
1 中国航空制造技术研究院航空焊接与连接技术航空科技重点实验室,北京 100024;
2 中国航空制造技术研究院高能束流加工技术重点实验室,北京 100024
Fatigue Behavior Analysis of TC4 Titanium Joints by Rigid Restraint Thermal Self-Compressing Bonding
DENG Yunhua1,2
1 Aeronautical Key Laboratory for Welding and Joining Technologies, AVIC Manufacturing Technology Institute, Beijing 100024;
2 Key Laboratory on Power Beam Science and Technology, AVIC Manufacturing Technology Institute, Beijing 100024
下载:  全 文 ( PDF ) ( 5472KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用电子束热源非熔化加热对TC4钛合金进行了刚性拘束热自压扩散连接。通过对不同应力水平下连接接头的疲劳寿命进行测试,绘制了中值疲劳寿命S-N曲线,并结合疲劳断口扫描电镜观察和红外热成像原位观察对连接接头的疲劳性能以及缺陷对连接接头疲劳性能的影响进行了分析。结果表明:TC4钛合金刚性拘束热自压扩散连接接头界面未焊合缺陷易成为疲劳裂纹源,缩短疲劳裂纹萌生的时间,导致接头的总疲劳循环寿命下降,接头疲劳性能相比母材下降。加热时间延长,界面未焊合缺陷减少,连接接头的疲劳性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓云华
陶军
马旭颐
关键词:  刚性拘束热自压扩散连接  疲劳性能  界面未焊合  红外热成像    
Abstract: Rigid restraint thermal self-compressing bonding (TSCB) of TC4 titanium alloy was conducted by means of localized electron beam non-melted heating. Fatigue tests of TC4 titanium joints by rigid restraint TSCB under various stress levels were carried out, and the median fatigue life S-N curves of the joints were drawn according to the test results. Fatigue property of TC4 titanium joints by rigid restraint TSCB and the effect of defect at bonding interface on it were investigated through the analysis of S-N curves, observation of fatigue fracture by scanning electron microscope and the in situ observation of fatigue fracture process by infrared thermal imaging. It was found that the defect at bonding interface was prone to grow into fatigue crack which would reduce initiation time of fatigue crack, and resulted to a shortened total fatigue life of the joints compared with that of base metal. With the prolonging of heating time, the unwelded defect at bond interface of joint was reduced, which significantly improves the fatigue performance of TC4 titanium joint obtained by rigid restraint TSCB
Key words:  rigid restraint thermal self-compressing bonding    fatigue property    discontinuous at bond interface    infrared thermography
                    发布日期:  2019-05-08
ZTFLH:  TG44  
基金资助: 国家自然科学基金青年基金(51705491)
通讯作者:  yunhuadeng@emails.bjut.edu.cn   
作者简介:  邓云华,1987年出生,中国航空制造技术研究院高级工程师,2016年毕业于北京航空航天大学,获得材料加工工程博士学位,主要从事钎焊/扩散连接、高能束流焊接和数值模拟相关工作。
引用本文:    
邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
DENG Yunhua, TAO Jun, MA Xuyi. Fatigue Behavior Analysis of TC4 Titanium Joints by Rigid Restraint Thermal Self-Compressing Bonding. Materials Reports, 2019, 33(9): 1449-1454.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17100259  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1449
1 邓云华,关桥,吴冰,等.中国专利,201310594763.9.2015.
2 Deng Y H, Guan Q, Wu B, et al. Materials Letters,2014,129,43.
3 Deng Y H, Guan Q, Tao J, et al. Acta Metallurgica Sinica,2015,51(9),1111(in Chinese).
邓云华,关桥,陶军,等.金属学报,2015,51(9),1111.
4 Deng Y H, Guan Q, Tao J, et al. Rare Metal Materials and Engineering,2017,46(6),1620(in Chinese).
邓云华,关桥,陶军,等.稀有金属材料与工程,2017,46(6),1620.
5 Huang Z T. Statistics of fatigue applications, National Defense Industry Press, China,1986(in Chinese).
黄镇同.疲劳应用统计学,国防工业出版社,1986.
6 Chen F R, Huo L X, Zhang Y F, et at. Journal of Inner Mongolia University of Technology( Natural Science Edition),2003,22(1),39(in Chinese).
陈芙蓉,霍立兴,张玉凤,等.内蒙古工业大学学报(自然科学版),2003,22(1),39.
7 Evans W J. Bache M R, McElhone M. International Journal of Fatigue,1997,19(93),177.
8 He X, Yue J, Shen B L. Transactions of Nonferrous Metals Society of China,2003,24(2),386.
9 Gao L Q, Zhu J H. Heat Treatment of Metals,2006,31(8),91(in Chinese).
高灵清,朱金华.金属热处理,2006,31(8),91.
10 Zhao G J, Zhong S H, Deng J H. Journal of Guizhou University of Technology(Natural Science Edition),2007,36(6),25(in Chinese).
赵光菊,钟蜀晖,邓建华.贵州工业大学学报(自然科学版),2007,36(6),25.
11 Zhong Q P, Zhao Z H. Fractography, Higher Education Press, China,2006(in Chinese).
钟群鹏,赵子华.断口学,高等教育出版社,2006.
12 Yang L N, Liu J R, Wang Q J, et al. Transactions of Nonferrous Metals Society of China,2013,23(1),S257(in Chinese).
杨丽娜,刘建荣,王清江,等.中国有色金属学报,2013,23(1),S257.
13 Zhou Y C, Zheng X J. Macro and micro mechanical properties of mate-rials, Higher Education Press, China,2009(in Chinese).
周益春,郑学军.材料的宏微观力学性能,高等教育出版社,2009.
14 Venkataraman B, Rai B, Mukhopadhyay C K, et al. In:27th Annual Review of Progress in Quantitative Nondestructive Evaluation. Ames, USA,2000.
15 Liu J, Gao X L, Zhang L J, et al. Journal of Materials Engineering and Performance,2014,23(8),2965.
16 Mang X Y. Study on welding process and mechanical behavior of double-sided laser beams welded T-joints for titanium alloy. Ph.D. Thesis, Beijing University of Technology, China,2016(in Chinese).
马旭颐.钛合金T型结构双光束激光焊接工艺及接头力学行为研究.博士论文,北京工业大学,2016.
[1] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[2] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[3] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[4] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[5] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[6] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[7] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed