Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2704-2709    https://doi.org/10.11896/cldb.18070156
  无机非金属及其复合材料 |
基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究
吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳
长安大学公路学院,西安 710064
Study on Fatigue Performance and Mechanism of Emulsified Asphalt Cold Recycled Mixture Based on Genetic Optimization
LYU Zhenghua, SHEN Aiqin, LI Yue, GUO Yinchuan, YU Muyang
School of Highway, Chang'an University, Xi'an 710064
下载:  全 文 ( PDF ) ( 2480KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高乳化沥青冷再生混合料疲劳性能评价及优化设计的精准性,通过正交试验设计,分析了不同应力比下水泥掺量、乳化沥青掺量及RAP掺量对混合料疲劳性能的影响规律。采用BP神经网络模型结合遗传算法对材料组成参数进行了优化,并建立了材料掺量与应力水平的相关关系。基于微观形貌测试及元素分析,揭示了冷再生混合料的耐疲劳抗裂机理。研究表明:不同应力比下各材料掺量对疲劳性能影响的显著性存在差异,高应力比下随各材料掺量的增大,混合料的疲劳性能均存在峰值;根据遗传优化结果推荐1.53%水泥掺量、3.56%乳化沥青掺量及78.31%RAP掺量作为最佳配比;在矿料-沥青界面开裂处,Ca/Si比高达78.84%,存在大量C3S、C2S等水化产物,界面强度显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕政桦
申爱琴
李悦
郭寅川
喻沐阳
关键词:  乳化沥青冷再生混合料  疲劳性能  遗传优化  材料掺量  抗裂机理    
Abstract: n order to improve the accuracy of fatigue performance evaluation and optimal design of emulsified asphalt cold recycled mixture, the effect of cement content, emulsified asphalt content and RAP content on fatigue performance of cold recycled mixture under various stress ratio were studied by orthogonal test design. Based on BP neural network model and genetic algorithm, materials parameter were optimized and the correlation between materials content and stress level was illustrated. Then the anti-cracking mechanism of cold recycled mixture was revealed according to SEM test and elemental analysis. The results showed that the significance of materials content influencing fatigue performance under various stress ratio was ranked differently, and the fatigue performance all existed a peak as materials content increased under high stress level. The proportion of 1.53% cement, 3.56% emulsified asphalt and 78.31% RAP was recommend by genetic optimization results. Abundant hydration products like C3S and C2S were found positioning in the interfacial crack between asphalt and aggregate, where the content of Ca/Si was as high as 78.84% that enhanced the interfacial strength.
Key words:  emulsified asphalt cold recycled mixture    fatigue performance    genetic optimization    materials content    anti-crack mechanism
                    发布日期:  2019-07-12
ZTFLH:  U414  
基金资助: 陕西省自然科学基金(2017JQ5085);长安大学中央高校基本科研业务费专项资金(300102219713)
作者简介:  吕政桦,自2015年9月起在长安大学硕博连读学习,主要从事沥青混合料冷再生技术和水泥混凝土内养生技术的研究。
引用本文:    
吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
LYU Zhenghua, SHEN Aiqin, LI Yue, GUO Yinchuan, YU Muyang. Study on Fatigue Performance and Mechanism of Emulsified Asphalt Cold Recycled Mixture Based on Genetic Optimization. Materials Reports, 2019, 33(16): 2704-2709.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070156  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2704
[1] Arimilli S, Jain P K, Nagabhushana M N. Journal of Materials in Civil Engineering, 2016, 28(2),04015132.
[2] Gómez-Meijide B, Pérez I. Materials & Design, 2014, 57(5),520.
[3] Ebels L J. Characterisation of material properties and behaviour of cold bituminous mixtures for road pavements. Ph.D.Thesis, Stellenbosch University, South Africa,2008.
[4] Yan J, Leng Z, Li F, et al. Construction & Building Materials, 2017, 137,153.
[5] Huang Qinlong, Quan Chenjia, Yang Zhuang, et al. Journal of Building Materials, 2017, 20(5),739 (in Chinese).
黄琴龙,权晨嘉,杨壮,等. 建筑材料学报, 2017, 20(5),739.
[6] Wang Decai, Hao Peiwen, Wei Xinlai. Journal of Beijing University of Technology, 2016, 42(4),541(in Chinese).
汪德才, 郝培文, 魏新来. 北京工业大学学报, 2016, 42(4),541.
[7] Yan J, Zhu H, Zhang Z, et al. Construction & Building Materials, 2014, 71(71),444.
[8] Ministry of Communications Highway Science Research Institute. Technical specifications for highway asphalt pavement recycling, China Communications Press, China,2008(in Chinese).
交通部公路科学研究院. 公路沥青路面再生技术规范, 人民交通出版社, 2008.
[9] Gao Lei. Cracking behavior and fracture mechanism of cold recycled mixes with emulsion. Ph.D. Thesis, Southeast University, China,2016 (in Chinese).
高磊. 乳化沥青冷再生混合料的裂纹发展行为及抗裂机理研究. 博士学位论文,东南大学, 2016.
[10] Zhu Yuefeng, Zhang Hongliang. Materials Review A:Review Papers, 2015, 29(12),86(in Chinese).
朱月风, 张洪亮.材料导报:综述篇, 2015, 29(12),86.
[11] Ozsahin T S, Oruc S. Construction and Building Materials, 2008, 22(7),1436.
[12] Meng Fanyu, Pan Xiaodong. Journal of Jilin University Engineering and Technology Edition, 2013(s1),535(in Chinese).
孟繁宇, 潘晓东.吉林大学学报(工学版), 2013(s1),535.
[1] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[2] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[3] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[4] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[5] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[6] 高古辉, 桂晓露, 谭谆礼, 白秉哲. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 74-81.
[7] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed