Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1825-1830    https://doi.org/10.11896/cldb.18030256
  材料与可持续发展(二)——材料绿色制造与加工* |
自冲铆接头疲劳性能影响因素研究进展
刘洋, 庄蔚敏, 施宏达
吉林大学汽车仿真与控制国家重点实验室,长春 130022
Influencing Factors on Fatigue Performance of Self-piercing Riveted Joints: a Review
LIU Yang, ZHUANG Weimin, SHI Hongda
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022
下载:  全 文 ( PDF ) ( 1525KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于近年来车身轻量化的需求,全铝车身结构及混合材料车身结构是车身设计制造的发展趋势,其结构连接问题也面临巨大的挑战。自冲铆接作为一种冷成型技术,通过铆钉和板料形成机械内锁结构进行板材连接,可以用来连接两层和多层金属及非金属板材。相对于传统连接技术,自冲铆接具有无需预先打孔、连接过程环境友好、可以连接异质板材及非金属板材等优点,同时所得到的接头具有较好的密封性及力学性能。自冲铆接作为轻量化结构的一种新型连接手段,近年来因具有独特的优势得到迅速发展。疲劳性能是接头工程应用的关键性能指标,自冲铆接头的疲劳性能研究主要针对铝合金及高强钢等车身材料展开,近年来研究者们对钛合金和纤维增强复合材料等新型材料自冲铆接头的疲劳性能进行了相关探索性研究。影响自冲铆接头疲劳性能的因素众多,提高自冲铆接头疲劳性能的方法及探究接头的疲劳失效机理一直是研究者们所关注的热点。影响自冲铆接头疲劳性能的因素主要包括铆接工艺、基板参数、铆钉分布形式、接头搭接形式、疲劳加载参数、试验温度和添加粘接剂等,其中大量研究主要针对铆接工艺、基板参数和铆钉分布形式展开。研究表明,采用高强度的板材作下板、增加板厚及使用硬度较高的圆头铆钉进行连接能够提高单搭自冲铆接头的疲劳性能;铆钉个数的增加可以显著提高接头的疲劳性能,采用不同铆钉分布形式及铆钉边距影响接头的疲劳性能。自冲铆接头存在残余应力,同时微动磨损是导致机械连接疲劳失效的主要原因,通过去应力退火可以提高接头在高疲劳载荷下的疲劳寿命,对基板添加润滑剂镀层也可以改善接头的疲劳性能。此外,粘铆复合接头目前在车身连接中得到广泛应用,粘接剂可以减弱接头的应力集中,从而改善其疲劳性能。疲劳试验耗时较多,试验成本较高。研究自冲铆接头疲劳性能的影响因素可以为后续研究及其工程应用提供相关参考。本文归纳了自冲铆接头疲劳性能影响因素的研究进展并总结了改善接头疲劳性能的方法,同时对自冲铆接的研究方向进行分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
庄蔚敏
施宏达
关键词:  自冲铆  疲劳性能  影响因素    
Abstract: Due to the demand of lightweight body in recent years, aluminium alloy structures and mixed-material structures are the development trend of body design and manufacture, and the problem of structure connection is also facing great challenges. Self-piercing riveting (SPR) is a cold mechanical joining process used to join two or more sheets of metal and nonmetallic materials by forming a mechanical interlock structure through rivet and sheet. Compared with other conventional joining methods, SPR has many advantages including no pre-drilled holes required, environmentally-friendly connection process, and the ability to join dissimilar sheets and nonmetallic sheets. At the same time, the joint has better sealing and mechanical properties. As a new type of joining method employs the connection of lightweight structure, SPR has been developed rapidly in recent years because of its unique advantages. Fatigue performance is a key index of engineering application of joint. The substrate materials studied are mainly used aluminum alloy and high strength steel. In recent years, the fatigue properties of SPR joints of titanium alloy and fiber reinforced composites have also been studied. There are many factors affecting the fatigue performance of SPR joint. The method of improving the fatigue performance of SPR joint and the fatigue fai-lure mechanism of the joint have always been the focus of the researchers. The factors that affect the fatigue performance of SPR joint include riveting process, substrate parameters, rivet distribution, joint lap form, fatigue loading parameters, test temperature and adding adhesive. A large number of researches mainly focus on the factors of riveting process, substrate parameters and rivet distribution. The results illustrate that the fatigue performance of the joint can be improved by using the high strength sheet as the lower sheet, increasing the thickness of the sheet and using the domed head rivet with high hardness. The increase of the number of rivets can significantly improve the fatigue performance of the joint, and the fatigue properties of the joints are affected by the distribution and edge distance of rivets. SPR joint existence the residual stress and fretting wear is the main cause of fatigue failure of mechanical connection. Stress annealing can improve the fatigue performance of the joint under high fatigue load. Adding lubricant coating on substrate sheet can also improve the fatigue performance of the joint. In addition, the adhesive bonded-SPR hybrid joints are widely used in body connection. Adhesive can reduce the stress concentration of joints and improve its fatigue properties. The fatigue test is time-consuming and high cost test. The factors affecting fatigue performance of SPR joint can be the reference for further research and engineering application. This review offers a retrospection of the research efforts with respect to the factors affecting the fatigue properties of SPR joint and summarizes the methods to improve the fatigue properties of joint, besides, the research direction of SPR is analyzed and prospected.
Key words:  self-piercing riveting    fatigue property    influencing factors
               出版日期:  2019-06-10      发布日期:  2019-05-21
ZTFLH:  TH131.1  
基金资助: 国家自然科学基金(51775227;51375201);国家重点研发计划项目(2016YFB0101601);吉林省省校共建计划专项项目(SXGJSF2017-2-1-5)
通讯作者:  zhuangwm@jlu.edu.cn        
作者简介:  刘洋,吉林大学汽车工程学院博士研究生,在庄蔚敏教授的指导下进行研究。目前主要从事车身结构轻量化设计的相关研究工作。近年来,在板材连接领域发表论文10余篇。庄蔚敏,吉林大学汽车工程学院教授、博士研究生导师。2006年7月在吉林大学汽车工程学院车辆工程专业获得博士学位,2007年—2008年在英国帝国理工学院进行访问研究,主要从事汽车车身轻量化技术的相关研究工作。近年来,在高强钢/铝合金温热成形和异种材料连接技术领域发表论文40余篇。
引用本文:    
刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
LIU Yang, ZHUANG Weimin, SHI Hongda. Influencing Factors on Fatigue Performance of Self-piercing Riveted Joints: a Review. Materials Reports, 2019, 33(11): 1825-1830.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030256  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1825
1 Wang W P, Wang X, Zhang Y Q. Journal of Chongqing University of Technology(Natural Science),2016,30(3),9(in Chinese).
王维平,王霄,张云清.重庆理工大学学报(自然科学版),2016,30(3),9.
2 Li Y, Li W C. Journal of Chongqing University of Technology (Natural Science),2018,32(12),7(in Chinese).
李勇,李文超.重庆理工大学学报(自然科学版),2018,32(12),7.
3 Mori K, Kato T, Abe Y, et al. CIRP Annals-Manufacturing Technology,2006,55(1),283.
4 Sun X, Stephens E V, Khaleel M A. International Journal of Fatigue,2007,29(2),370.
5 Mori K, Abe Y, Kato T. Journal of Materials Processing Technology,2012,212(9),1900.
6 He X C, Gu F S, Ball A. Progress in Materials Science,2014,65(10),1.
7 Li D, Chrysant A, et al. International Joumal of Advanced Manufacturing Technology,2017,92(5-8),1777.
8 He X C, Pearson I, Young K. Journal of Materials Processing Technology,2008,199(1),27.
9 He X C, Gu F S, Ball A. International Journal of Advanced Manufactu-ring Technology,2012,58(5-8),643.
10 Sui B, Du D, Chang B H, et al. Automotive Engineering,2006,28(1),85(in Chinese).
岁波,都东,常保华,等.汽车工程,2006,28(1),85.
11 Haque R. Archives of Civil & Mechanical Engineering,2018,18(1),83.
12 Xing B Y, He X C, Wang Y Q, et al. Journal of Materials Processing Technology,2015,216,28.
13 Hall S N V, Findley K O, Freis A. Journal of Materials Processing Technology,2018,251,350.
14 Zhang X L. Research on fretting and fatigue mechanism of self-piercing riveting in aerial light alloy sheets. Master’s Thesis, Kunming University of Science and Technology, China, 2017 (in Chinese).
张先炼.航空轻合金薄板自冲铆接微动疲劳机理研究.硕士学位论文,昆明理工大学,2017.
15 Gay A, Lefebvre F, Bergamo S, et al. International Journal of Fatigue,2016,83,127.
16 Chung C S, Kim H K. Fatigue & Fracture of Engineering Materials & Structures,2016,39(9),1105.
17 Sun X, Khaleel M A. Journal of Manufacturing Processes,2005,7(1),83.
18 Zhang L, He X C, Zhang X L, et al. Materials Review B: Research Papers,2017,31(6),72(in Chinese).
赵伦,何晓聪,张先炼,等.材料导报:研究篇,2017,31(6),72.
19 He X C, Zhao L, Deng C J, et al. Materials & Design,2015,65,923.
20 Zhang C Y, Gou R B, Yu M, et al. Journal of Iron and Steel Research International,2017,24(2),214.
21 Cheng Q, He X C, Xing B Y, et al. Materials Review B: Research Papers,2017,31(6),84(in Chinese).
程强,何晓聪,邢保英,等.材料导报:研究篇,2017,31(6),84.
22 Zhao L, He X C, Xing B Y, et al. Materials & Design,2015,87,1010.
23 Huang L, Bonnen J, Lasecki J, et al. International Journal of Fatigue,2016,83,230.
24 Zhao L, He X C, Xing B Y, et al. Journal of Materials Processing Technology,2017,249,246.
25 Iyer K, Brittman F L, et al. Fatigue & Fracture of Engineering Materials & Structures,2005,28(11),997.
26 Khanna S K, Long X, Krishnamoorthy S, et al. Science & Technology of Welding & Joining,2006,11(5),544.
27 Xing B Y, He X C, Zeng K, et al. International Journal of Advanced Manufacturing Technology,2014,75(1-4),351.
28 Xing B Y, He X C, Wang Y Q, et al. Transactions of the China Welding Institution,2016,37(6),50(in Chinese).
邢保英,何晓聪,王玉奇,等.焊接学报,2016,37(6),50.
29 Xing B Y, He X C, Tang Y, et al. Engineering Mechanics,2013,30(12),280(in Chinese).
邢保英,何晓聪,唐勇,等.工程力学,2013,30(12),280.
30 Huang Z C, Huang Q W, Li S J, et al. Forging & Stamping Technology,2017,42(9),150(in Chinese).
黄志超,黄秋雯,李绍杰,等.锻压技术,2017,42(9),150.
31 Li D, Han L, Thornton M, et al. Materials Science & Engineering A,2012,558(48),242.
32 Franco G D, Fratini L, Pasta A. Materials & Design,2012,35,342.
33 Kang S H, Kim H K. International Journal of Fatigue,2015,80,58.
34 Su Z M, Lin P C, Lai W J, et al. International Journal of Fatigue,2015,72,53.
35 Huang L, Shi Y, Guo H, et al. International Journal of Fatigue,2016,88,96.
36 Han L, Young K W, Chrysanthou A, et al. Advanced Materials Research,2006,6-8(10),157.
37 Haque R, Beynon J H, Durandet Y, et al. Science & Technology of Wel-ding & Joining,2012,17(1),60.
38 Haque R, Wong Y C, Paradowska A, et al. Advances in Materials Science and Engineering,2017,2017,1.
39 Huang L, Moraes J F C, Sediako D, et al. Journal of Manufacturing Science & Engineering,2017,139(2),021007-1.
40 Zhang X L, He X C, Xing B Y, et al. Materials & Design,2016,97,108.
41 Chen Y K, Han L, Chrysanthou A, et al. Wear,2003,255(7-12),1463.
42 Han L, Chrysanthou A, Young K W, et al. Fatigue & Fracture of Engineering Materials & Structures,2006,29(8),646.
43 Han L, Chrysanthou A, O’Sullivan J M. Materials & Design,2006,27(3),200.
44 Hunt C J J, Su X, Quinn A K K J, et al. Advanced Materials & Processes,2013,171(5),29.
[1] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[2] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[3] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[4] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[5] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[6] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[7] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[8] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[9] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[10] 刘洋, 何晓聪, 邢保英, 邓聪, 张先炼. 泡沫金属夹层板自冲铆接头的疲劳性能及失效机理[J]. 《材料导报》期刊社, 2018, 32(14): 2431-2436.
[11] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[12] 李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
[13] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[14] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[15] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed