Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 191-197    https://doi.org/10.11896/cldb.201901023
  材料与可持续发展(二)——材料绿色制造与加工* |
微波技术在煤热解工艺中的应用现状
周军1,2, 吴雷1, 梁坤1, 宋永辉1,2, 张秋利1,2
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
Status Quo of Applying Microwave Technique to the Pyrolysis Process of Coal
ZHOU Jun1,2, WU Lei1, LIANG Kun1, SONG Yonghui1,2, ZHANG Qiuli1,2
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055
2 Shaanxi Province Metallurgical Engineering and Technology Research Centre, Xi’an 710055
下载:  全 文 ( PDF ) ( 1906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 中国能源的分布主要呈现“富煤、贫油、少气”的特点。作为储量最丰富的一次能源,煤炭资源在我国能源结构中占据举足轻重的地位。我国煤炭资源的主要利用方式为直接燃烧后供热和发电,然而直接燃烧是一种最粗放的利用方式,将造成严重的环境污染。因此,大力发展煤炭清洁生产,将煤炭转化为能效更高、更环保的二次能源,是未来长时间内煤炭资源利用可持续发展的主要方向。
   将微波技术与煤热解技术结合而成的煤微波热解技术是基于微波辐照过程中煤炭中的极性官能团、固定碳和灰分等的介电损耗和磁损耗,使微波能被快速吸收,转化为热能,生成固、气和液三种形态产物的一种新型煤热解技术,具有反应时间短、化学反应速率快、热解液体产物收率高以及产品质量好等显著优点。同时,煤微波热解技术由于与传统煤热解工艺不同,可极大地降低环境污染,大幅提高煤炭资源利用率,为煤的清洁高效利用和分级提质利用提供了一种有效的新思路。
   国内外该领域的研究主要集中在煤微波热解工艺条件、热解环境和热解混合物等对热解产品分布规律及组分逸出机制的影响等方面,旨在更进一步提高煤热解效率、煤焦油收率和产品质量。大量研究发现,煤样的形状和大小、煤样中的水分、热解反应温度、微波输出功率等因素都会对煤微波热解产物分布、产物收率以及产物质量产生影响。此外,在煤微波热解过程中,添加活性炭、焦炭等碳材料或Fe3O4、CuO等金属材料作为吸波剂,可提高整体吸波性能,使煤样升温更快、温度分布更均匀,从而显著提高煤焦油收率和质量;通入甲烷或氢气,或其他工业“富氢”尾气,或采用煤与废塑料、生物质、油页岩和液化残渣等“富氢”物质的共热解均能为煤微波热解反应提供充足的氢,使加氢反应更充分。微波场中的加氢协同作用可有效提高煤的热解效率和煤焦油收率,提升煤焦油中轻质组分的含量。
   本文主要归纳了微波技术在煤热解工艺中的应用现状,分析总结了煤微波热解工艺的主要影响因素以及煤强化微波热解、煤加氢热解、煤与其他“富氢”物质微波共热解三种现有工艺的研究进展,并以煤微波热解技术应用过程中急需解决的关键问题为落脚点,提出了未来煤微波热解技术的研究方向,为加速煤微波热解技术的工业化应用奠定坚实的基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周军
吴雷
梁坤
宋永辉
张秋利
关键词:    微波热解  影响因素  强化热解  加氢热解  共热解    
Abstract: The characteristics of energy distribution in China can be concluded as “rich in coal, poor in oil, and short of gas”. As the most abundant primary energy, coal resource plays an crucial role in Chinese energy structure.Direct combustion for heatsupply and power generationhas long been a major utilization method of coal resources. However, direct combustion is the most extensive utilization method, which will cause serious environmental pollution. Therefore, it is the main direction for the development of coal resources utilization in the future to promote clean coal production, and transform coal into a more energy efficient and environmentally friendly secondary energy source.
The microwave pyrolysis technology of coal is a novel coal pyrolysis process that combines microwave technology with coal pyrolysis technology.Based on the dielectric loss and magnetic loss of polar functional groups, fixed carbon, ash and other composition in coal, the microwave energy can be quickly absorbed and converted into heat energy,and products in solid, gas and liquid forms are generated. The microwave pyrolysis technology of coal features short reaction time, high chemical reaction rate, high liquid product yield and favorable product quality. Meanwhile, different from conventional coal pyrolysis technology, microwave pyrolysis technology can greatly reduce environmental pollution, improve the utilization rate of coal resources, which provide an effective way for clean and efficient utilization of coal.
The researches on microwave pyrolysis technology of coal at home and abroad mainly focuses on the impact of technical conditions of coal microwave pyrolysis, pyrolysis environment and mixed materials pyrolysis on the distribution of pyrolysis products and the mechanism of component escape,aiming at improving coal pyrolysis efficiency,and coal tar yield and quality. Numerous research results indicate that the shape and size of coal particles, the moisture content in coal sample, the pyrolysis temperature, microwave output power and other factors will affect the distribution,yield and quality of coal microwave pyrolysis products. Furthermore, it is beneficial for acquiring higher heating rate and more uniform temperature distribution, and further improve the coal tar yield and quality significantly by adding activated carbon, coke and other carbon mate-rials, or metal mate rials like Fe3O4, CuO as microwave absorbent. Besides,sufficient hydrogen can be provided for hydrogenation pyrolysis reaction to achieve complete hydrogenation reaction can be realized by introducing methane or hydrogen, or other industrial tail gas rich in hydrogen into pyrolysis process,or co-pyrolysis coal with waste plastics, biomass, oil shale, liquefied residue and other substance rich in hydrogen. The synergistic effect of hydrogenation in microwave field can effectively improve the pyrolysis efficiency of coal and the yield of coal tar, and increase the content of light components in coal tar.
This article reviews status quo of applying microwave technique in pyrolysis process of coal and offers a retrospection of the main influence factors for coal microwave pyrolysis process, and provides descriptions about three existing coal microwave pyrolysis technologies: coal enhanced microwave pyrolysis, coal hydrogenation pyrolysis and coal microwave co-pyrolysis. It also analyzes the key existing problems in the application process, and put forward the research directions of developing coal microwave pyrolysis technology, which lays a solid foundation for accelerating the industrial application of microwave pyrolysis technology of coal.
Key words:  coal    microwave pyrolysis    influence factors    enhanced pyrolysis    hydropyrolysis    co-pyrolysis
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TQ530.2  
基金资助: 国家自然科学基金(51774227);陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-33);陕西省科技统筹创新工程重大科技项目(2011KTDZ01-05-04)
作者简介:  周军,西安建筑科技大学化工系教授、博士研究生导师,xazhoujun@126.com。
引用本文:    
周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
ZHOU Jun, WU Lei, LIANG Kun, SONG Yonghui, ZHANG Qiuli. Status Quo of Applying Microwave Technique to the Pyrolysis Process of Coal. Materials Reports, 2019, 33(1): 191-197.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901023  或          http://www.mater-rep.com/CN/Y2019/V33/I1/191
1 Jin Y, Zhou Y C, Hu S Y. CIESC Journal,2012,63(1),3(in Chinese).金涌,周禹成,胡山鹰.化工学报,2012,63(1),3.2 Zhang H Z R, Li S H, Kelly K E, et al. Progress in Energy and Combustion Science,2017,62,1.3 Zhang Y N, Paul C, Liu S Y, et al. Bioresource Technology,2017,230,143.4 Fernanda C B, Du Z Y, Xie Q L, et al. Bioresource Technology,2014,156,267.5 Xie Q L, Peng P, Liu S Y, et al. Bioresource Technology,2014,172,162.6 Victor A, Dushyant S, Mark W S, et al. Fuel,2018,217,656.7 Ma R, Sun S C,Geng H H, et al. Energy,2018,144,515.8 Lan X Z, Luo W J, Song Y H, et al. Energy & Fuels,2015,29,12.9 Peng Z W, Lin X L, Wu X J, et al. Fuel Processing Technology,2016,150,58.10 Singh S, Neculaes V B, Lissianski V, et al. Fuel,2015,140,495.11 Faisal M, Ramli M, Farid N A. Energy Conversion and Management,2016,110,142.12 Zhao X Q, Guo B W, Wang W L. Journal of Analytical and Applied Pyrolysis,2017,124,303.13 Zhou J, Yang Z, Liu X F, et al. Spectroscopy and Spectral Analysis,2016,36(2),459(in Chinese).周军,杨哲,刘晓峰,等.光谱学与光谱分析,2016,36(2),459.14 Zhou J, Yang Z, Wu L, et al. Journal of China Coal Society,2015,40,2465(in Chinese).周军,杨哲,吴雷,等.煤炭学报,2015,40(10),2465.15 Zhou J, Chen Y F, Wu L,et al. Energy & Fuels,2017,31,6895.16 Zhang Y N, Liu S Y, Fan L L, et al. Energy Conversion and Management,2018,159,76.17 Motasemi F, Muhammad T A. Renewable and Sustainable Energy Reviews,2013,28,317.18 Rajasekhar R B, Vinu R. Fuel Processing Technology,2016,154,96.19 Marland S, Merchant A, Rowson N. Fuel,2001,80,1839.20 Liu S Q, Zhang Y J, Zhang C F, et al. Journal of China Coal Society,2017,42(12),3280.刘淑琴,张彦军,张超凡,等.煤炭学报,2017,42(12),3280.21 Menendez J A, Arenillas A, Fidalgo B, et al. Fuel Processing Technology,2010,91,1.22 Liu S, Zhang M X, Xia H. Advance Material Research,2014,1088,721.23 Jo H N, Swee K L, Su S L, et al. Energy Conversion and Management,2017,143,399.24 Li G L, Liu Q R, Fang X K, et al. Coal Conversion,2015,38(4),12(in Chinese).李国亮,刘全润,方小可,等.煤炭转化,2015,38(4),12.25 Li L Z, Wang H G, Jiang X W, et al. Journal of China Coal Society,2016,41(7),1827(in Chinese).李龙之,王会刚,姜晓威,等.煤炭学报,2016,41(7),1827.26 Hao Y X, Liu Q R, Li G L. Coal Conversion,2013,36(4),1(in Chinese).郝英轩,刘全润,李国亮.煤炭转化,2013,36(4),1.27 Liu Q R, Xia H. Advanced Materials Research,2012,512-515,1790.28 Rybakov K I, Buyanova M N. Scripta Materialia,2018,149,108.29 Khaled D E, Novas N, Gazquez J A, et al. Renewable and Sustainable Energy Reviews,2018,82,2880.30 Fang J Y. Preparation and properties of carbon based electromagnetic wave absorbers and their applications. Ph.D. Thesis, Jilin University, China,2017(in Chinese).房基永.碳基电磁波吸收剂的制备及其应用研究.博士学位论文,吉林大学,2017.31 Reguera E, Diaz A C, Yee M H. Journal of Materials Science,2005,40,5331.32 Xu W C, Akria T. Fuel,1989,68,673.33 Yang Z. Experimental study on coal-gas catalytic co-pyrolysis enhanced by microwave. Master’s thesis, Xi’an University of Architecture and Technology, China,2016(in Chinese).杨哲.煤-煤气微波强化催化共热解实验研究.硕士学位论文,西安建筑科技大学,2016.34 Parisa M M, Mythili R, William R M, et al. Fuel,1995,74,20.35 Khadim H, Zahid H, Hussain G, et al. International Journal of Energy Research,2016,40,1532.36 Wang N Z, Xu X, Xue X Y, et al. Coal Science and Technology,2017,45(1),214(in Chinese).王宁梓,徐祥,薛晓勇,等.煤炭科学技术,2017,45(1),214.37 Yan Q K, Cen J M, Fang M X, et al. Coal Conversion,2017,40(2),22(in Chinese).闫其珂,岑建孟,方梦祥,等.煤炭转化,2017,40(2),22.38 Liao H Q, Sun C G, Li B Q, et al. Journal of Fuel Chemistry and Technology,1998,26(2),114(in Chinese).廖洪强,孙成功,李宝庆,等.燃料化学学报,1998,26(2),114.39 Ni M J, Zhao L, Fang M X, et al. Journal of Zhejiang University (Engineering Science),2016,50(2),320(in Chinese).倪明江,赵乐,方梦祥,等.浙江大学学报(工学版),2016,50(2),320.40 Zhong M, Ma F Y. Journal of Fuel Chemistry and Technology,2013,41(12),1427(in Chinese).钟梅,马凤云.燃料化学学报,2013,41(12),1427.41 Zhou J, Yang Z, Wu L, et al. Coal Conversion,2015,38(3),22(in Chinese).周军,杨哲,吴雷,等.煤炭转化,2015,38(3),22.42 Lan X Z, Liu Q N, Song Y H. Coal Conversion,2012,35(1),16(in Chinese).兰新哲,刘巧妮,宋永辉.煤炭转化,2012,35(1),16.43 Fu J P, Song Y H, Yan M, et al. Coal Conversion,2013,36(2),63(in Chinese).付建平,宋永辉,闫敏,等.煤炭转化,2013,36(2),63.44 Wang N, Yu J L, Arash T, et al. Coal Conversion,2015,38(4),27(in Chinese).王南,余江龙,Arash Tahmasebi,等.煤炭转化,2015,38(4),27.45 Yang A, Arash T, Yu J L. Journal of Analytical and Applied Pyrolysis,2017,128,75.46 Li S S, Ma X Q, Liu G C, et al. Journal of Analytical and Applied Pyrolysis,2016,120,540.47 Song Y H, She J M, Lan X Z, et al. Coal Conversion,2012,35(2),22(in Chinese).宋永辉,折建梅,兰新哲,等.煤炭转化,2012,35(2),22.48 Wang Q, Huan X K, Liu H P, et al. Journal of Chemical Industry and Enginneering(China),2008,59(5),1288(in Chinese).王擎,桓现坤,刘洪鹏,等.化工学报,2008,59(5),1288.49 Gao P, Sun R H, Liu A G, et al. Clean Coal Technology,2016,22(4),121(in Chinese).高鹏,孙任晖,刘爱国,等.洁净煤技术,2016,22(4),121.50 Xu J L, Bai Z Q, Li Z, et al. Fuel,2018,215,438.51 Li X H, Li L L, Li B F, et al. Fuel,2017,199,372.52 Yan M. Study of the briquetting pyrolysis technology for low rank pulve-rized coal in microwave field. Master’s thesis, Xi’an University of Architecture and Technology,China,2013(in Chinese).闫敏.微波场中低变质粉煤成型热解工艺研究.硕士学位论文,西安建筑科技大学,2013.53 Marcilla A, Catala L, Garcia Q J C, et al. Renewable Sustainable Energy Review,2013,27,11.54 Ma S C, Yao J J, Jin X, et al. Chemistry,2011,74(1),41(in Chinese).马双忱,姚娟娟,金鑫,等.化学通报,2011,74(1),41.55 Erick R U, Camilla F O, Ricardo B T, et al. Fuel,2016,185,236.56 Wahyu B W, Guan G Q, Jenny R, et al. Applied Catalysis B:Environment,2016,186,166.57 Fang X C, Zhang Z Q, Weng Y B, et al. Chemical Industry and Engineering Progress,2013,32(8),1725(in Chinese).方向晨,张忠清,翁延博,等.化工进展,2013,32(8),1725.58 Faisal M, Ramli M, Farid N A. Renewable and Sustainable Energy Reviews,2014,39,555.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[4] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[5] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[8] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[9] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[10] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[11] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[12] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[13] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[14] 朱红梅, 李柏春, 朱锦云, 邱长军, 唐忠锋. 熔盐堆用镍基合金在熔融氟盐中的腐蚀研究进展[J]. 材料导报, 2019, 33(11): 1813-1820.
[15] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed