Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2684-2689    https://doi.org/10.11896/cldb.18060180
  无机非金属及其复合材料 |
超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响
曹润倬1, 2, 周茗如1, 2,, 周群1, 2, 何勇1, 2
1 兰州理工大学甘肃省土木工程防灾减灾重点实验室, 兰州 730050
2 兰州理工大学西部土木工程防灾减灾教育部工程研究中心, 兰州 730050
Effect of Ultra-fine Fly Ash on Rheological Properties, Mechanical Properties and Microstructure of Ultra-high Performance Concrete
CAO Runzhuo1,2, ZHOU Mingru1,2, ZHOU Qun1,2, HE Yong1,2
1 Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050
2 Engineering Research Center for Disaster Prevention and Reduction of Civil Engineering in Western China, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 3345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探讨超细粉煤灰(UFA)对超高性能混凝土(UHPC)性能的影响,系统研究了UFA取代粉煤灰(NFA)后UHPC的流变性、力学性能、孔结构及微观结构变化。结果表明:当UFA取代NFA的质量分数小于50%时,UHPC的流动性会随着UFA取代量的增加而显著改善,继续增加UFA的取代量(大于50%)则UHPC的流动性降低;取代量小于50%的UFA可显著降低UHPC浆体的屈服应力和粘度;随着UFA取代量的增加,UHPC的抗压强度和抗折强度增大。当UFA完全取代NFA(100%)时,UHPC的最高抗压强度和抗折强度分别可达167.2 MPa和25.2 MPa。压汞仪和X 射线计算机断层扫描成像(X-CT)被用于测试UHPC硬化体的孔隙率,试验结果显示UFA可降低UHPC的孔隙率;扫描电镜结果也表明掺UFA可使UHPC的微观结构更加致密,从而使UHPC展现出优良的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹润倬
周茗如
周群
何勇
关键词:  超细粉煤灰  超高性能混凝土  流变性  强度  孔隙率    
Abstract: In order to investigate the effect of ultra-fine fly ash (UFA) on the impact of ultra-high performance concrete (UHPC), the rheological properties, mechanical properties, pore structure and microstructure of UHPC were systematically studied by using UFA instead of NFA. The results show that when the mass fraction of UFA substitutes for NFA is less than 50%, the fluidity of UHPC would be significantly improved with the increase of the amount of UFA, and the further increase in the substitution of UFA (more than 50%) would reduce the fluidity of UHPC. The rheological properties also show that UFA could significantly reduce the yield stress and viscosity of UHPC paste. The mechanical test results show that the compressive strength and flexural strength of UHPC increase with the increase of UFA substitution amount. When UFA completely replace NFA (100%), the maximum compressive strength and flexural strength can reach 167.2 MPa and 25.2 MPa, respectively. Mercury pressure and X-CT were used to test the porosity of the UHPC hardened body. The results show that UFA can reduce the porosity of UHPC, and the scanning electron microscope also shows that UFA can make the microstructure of UHPC more compact, thus enabling the UHPC to exhibit excellent mechanical properties.
Key words:  ultra-fine fly ash    ultra-high performance concrete    rheology propertiy    strength    porosity
                    发布日期:  2019-07-12
ZTFLH:  TQ178  
基金资助: 国家自然科学基金(51468039);甘肃省科技攻关项目(JK2015-153)
作者简介:  曹润倬,硕士研究生,2016年至今在兰州理工大学攻读工学硕士学位,主要从事高性能混凝土研究。
周茗如,兰州理工大学,教授,硕士研究生导师,兰州理工大学建材研究所所长,主要从事混凝土材料与结构、黄土地区新型复合地基研究,发表论文80篇,SCI、EI收录20余篇,授权专利10余项。
引用本文:    
曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
CAO Runzhuo, ZHOU Mingru, ZHOU Qun, HE Yong. Effect of Ultra-fine Fly Ash on Rheological Properties, Mechanical Properties and Microstructure of Ultra-high Performance Concrete. Materials Reports, 2019, 33(16): 2684-2689.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060180  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2684
[1] Yallnkaya . Construction and Building Materials, 2017, 144, 252.
[2] Lee N K, Koh K T, Kim M O, et al. Cement and Concrete Research, 2018, 104, 68.
[3] Richard P, Cheyrezy M. Cement and Concrete Research, 1995, 25(7), 1501.
[4] Sbia L A, Peyvandi A, Lu J, et al. Materials and Structures, 2017, 50(1), 7.
[5] Song Q, Yu R, Wang X, et al. Construction and Building Materials, 2018, 158, 883.
[6] Chen T, Gao X, Ren M. Construction and Building Materials, 2018, 158, 864.
[7] Huang H, Gao X, Wang H, et al. Construction and Building Materials, 2017, 149, 621.
[8] Meng W, Khayat K H. Composites Part B: Engineering, 2016, 107, 113.
[9] Han B, Sun S, Ding S, et al. Composites Part A: Applied Science and Manufacturing, 2015, 70, 69.
[10] Ma R, Guo L, Sun W, et al. Materials and Structures, 2017, 50(2), 166.
[11] Narayanan A, Shanmugasundaram P. Energy and Buildings, 2017, 138, 539.
[12] Cyr M, Lawrence P, Ringot E. Cement and Concrete Research, 2006, 36(2), 264.
[13] Singh S, Ransinchung G D, Kumar P. Construction and Building Mate-rials, 2017, 156, 19.
[14] Mohamed O A, Najm O F. Frontiers of Structural and Civil Engineering, 2017, 11(4), 406.
[15] Hanif A, Lu Z, Li Z. Construction and Building Materials, 2017, 144, 373.
[16] Venkatanarayanan H K, Rangaraju P R. Cement and Concrete Compo-sites, 2013, 43, 54.
[17] Ravina D. Cement and Concrete Research, 1980, 10(4), 573.
[18] Long G, Wang X Y, Xiao R, et al. Advances in Cement Research, 2003, 15(1), 17.
[19] Gao Y, Zhou S. Journal of Central South University of Technology, 2005, 12(5), 596.
[20] Zhang X, Han J. Cement and Concrete Research, 2000, 30(5), 827.
[21] Collins F, Sanjayan J G. Cement and Concrete Research, 1999, 29(3), 459.
[22] Mejdoub R, Hammi H, Khitouni M, et al. Journal of Materials in Civil Engineering, 2017, 29(6), 04017019.
[23] Liu J Z. Study on preparation technology and static, dynamic tensile behaviour of ultra-high performance cementitious composites. Ph.D Thesis, Southeast University, China, 2013(in Chinese).
刘建忠. 超高性能水泥基复合材料的制备工艺及静,动态拉伸性能研究. 博士学位论文,东南大学, 2013.
[24] Ehsani A, Nili M, Shaabani K. KSCE Journal of Civil Engineering, 2017, 21(5), 1854.
[25] Kwan A, Fung W, Wong H. Advances in Cement Research, 2010,22(1),3.
[26] Yahia A, Khayat K. Cement and Concrete Research, 2001, 31(5), 731.
[27] Vikan H, Justnes H. Cement and Concrete Research, 2007, 37(11), 1512.
[28] Ferraris C, Obla K, Hill R. Cement and Concrete Research, 2001, 31(2), 245.
[29] Wang D, Zhang L, Zhang W, et al. Journal of Building Materials, 2012, 15(6),755 (in Chinese).
王栋民,张力冉,张伟利,等. 建筑材料学报, 2012,15(6), 755.
[30] Siddique R. Cement and Concrete research, 2003, 33(4), 539.
[31] Peng Y, Hu S, Ding Q. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(2), 349.
[32] Wang X, Jacobsen S, Lee S, et al. Materials and Structures, 2010, 43(1-2), 125.
[33] Bentur A, Alexander M. Materials and Structures, 2000, 33(2), 82.
[34] Bouasker M, Mounanga P, Turcry P, et al. Cement and Concrete Composites, 2008, 30(1), 13.
[35] Awoyera P, Akinmusuru J, Dawson A, et al. Cement and Concrete Composites, 2018, 86, 224.
[36] Zhang H, Tian K. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(3), 533.
[1] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[6] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[7] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[8] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[9] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[10] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[11] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[12] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[13] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[14] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[15] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed