Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2677-2683    https://doi.org/10.11896/cldb.18100108
  无机非金属及其复合材料 |
煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究
陈军1, 2, 闵凡飞1,, 刘令云1
1 安徽理工大学材料科学与工程学院,淮南 2320012 煤炭加工与高效洁净利用教育部重点实验室,徐州 221116
Density Function Study on Microscopic Interactions Between Fine Particles of Coal and Kaolinite in Coal Slurry Water
CHEN Jun1,2, MIN Fanfei1, LIU Lingyun1
1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001
2 Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, Xuzhou 221116
下载:  全 文 ( PDF ) ( 3899KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤和高岭石是高泥化煤泥水中的主要微细颗粒,对煤泥水沉降有着显著的影响。本工作构建了水分子及四种不同煤结构单元的结构模型,采用密度泛函理论(Density functional theory,DFT)分别对单一水分子/不同煤结构单元在高岭石表面吸附及煤结构单元与水分子在高岭石表面的竞争吸附进行模拟计算,并初步探讨了煤泥水中微细煤与高岭石颗粒间的微观作用机理。DFT计算结果表明:四种不同煤结构单元均能够通过氢键作用及静电引力作用稳定吸附在高岭石表面,且吸附能都低于单一水分子在高岭石相应表面的吸附能;当水分子参与竞争吸附时,会在一定程度上抑制煤结构单元在高岭石表面的吸附,同时煤结构单元能够排开周围水分子以摆脱其占位影响,并与高岭石表面发生稳定吸附;煤泥水中微细煤与高岭石颗粒间的微观作用主要是煤结构单元中含氧官能团与高岭石表面形成的氢键作用和煤结构单元中苯环与高岭石表面间的静电引力作用,其中以苯环与高岭石表面间的静电引力作用为主导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈军
闵凡飞
刘令云
关键词:  煤泥水    高岭石  颗粒间微观作用  密度泛函理论    
Abstract: Fine particles of coal and kaolinite are primary fine particles in high muddied coal slurry water and have significant influence on the sedimentation of coal slurry water. The structural models of water molecule and four different coal structural units were constructed. The density functional theory (DFT) method was used to calculate the adsorption of single water molecule/different coal structural units on kaolinite surface and the competitive adsorption of coal structural units and water molecule on kaolinite surface, respectively. And the microscopic mechanism of micro-coal and kaolinite particles in coal slurry water was preliminarily discussed. The results of DFT calculation show that these four different coal structural units can be stably adsorbed on the kaolinite surface by hydrogen bonding and electrostatic attraction, and the adsorption energies are lower than that of single water molecule adsorption on the corresponding surface of kaolinite. In the case of competing adsorption with water molecule, the water molecule inhibit the adsorption of coal structural units on kaolinite surface to a certain extent, and the coal structural units are capable of flushing out the surrounding water molecule to get rid of its steric effect and stably adsorbing on kaolinite surfaces at the same time. The microcosmic mechanism of the interactions between fine particles of coal and kaolinite is mainly due to the hydrogen bonding between the oxygen-containing functional groups in the coal structural units and the kaolinite surfaces and the electrostatic attraction between the benzene rings in the coal structure units and kaolinite surfaces, in which the electrostatic attraction between the benzene rings and the kaolinite surfaces is dominant.
Key words:  coal slurry water    coal    kaolinite    microscopic interactions between particles    density functional theory
                    发布日期:  2019-07-12
ZTFLH:  TD94  
  X752  
基金资助: 国家自然科学基金(51804009);国家自然科学基金青年基金(51874011)
作者简介:  陈军,工学博士,讲师。2012年6月毕业于安徽理工大学,获矿物加工工程工学学士学位;2017年6月毕业于安徽理工大学,获矿物加工工程工学博士学位。主要研究方向为煤泥水处理、煤泥水中微细颗粒界面吸附及界面间微观作用,发表学术论文20余篇,其中以第一作者发表SCI/EI论文6篇。授权发明专利1项,主持国家自然基金青年基金项目1项,以主要参与人参与国家自然科学基金2项。
闵凡飞,教授,博士研究生导师。1993年6月毕业于淮南矿业学院,获选矿工程工学学士学位;2000年6月毕业于淮南工业学院,获矿物加工工程工学硕士学位;2005年6月毕业于中国矿业大学,获矿物加工工程工学博士学位;2008年5月至2009年9月在美国西肯塔基大学留学。现为安徽省学术和技术带头人,安徽高校优秀中青年骨干教师,中国煤炭工业技术委员会委员,安徽省煤炭技术委员会委员,中国颗粒学会颗粒制备与处理委员会委员,国家自然基金网评专家,Fuel、Powder Technology、Journal of Cleaner Production等学术期刊的长期审稿人。现任安徽理工大学国际交流与合作处处长、国际学院院长。获省部级奖励6项,其中主持完成的《难沉降煤泥水特性及治理新技术研究与应用》获2016年安徽省科技进步奖一等奖。在国内外期刊发表相关论文120余篇,其中被SCI/EI收录50余篇。授权发明专利6项、实用新型专利2项。
引用本文:    
陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
CHEN Jun, MIN Fanfei, LIU Lingyun. Density Function Study on Microscopic Interactions Between Fine Particles of Coal and Kaolinite in Coal Slurry Water. Materials Reports, 2019, 33(16): 2677-2683.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100108  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2677
[1] Israelachvili J N, McGuiggan P M. Science, 1988, 241(4867),795.
[2] Peng C, Song S, Fort T. Surface and Interface Analysis,2006,38(5),975.
[3] Cui J, Fang Q, Huang G. Nonferrous Metals, 1999, 51(4),25 (in Chinese).
崔吉让,方启学,黄国智. 有色金属, 1999, 51(4),25.
[4] Qiu G Z, Hu Y H, Wang D Z. Interactions between particles and flotation of fine particles, Central South University Press, China, 1993(in Chinese).
邱冠周,胡岳华,王淀佐. 颗粒间相互作用与细粒浮选, 中南工业大学出版社,1993.
[5] Fan G, Cao Y. Journal of China University of Mining & Technology, 2015,44(3),532(in Chinese).
范桂侠,曹亦俊. 中国矿业大学学报,2015,44(3),532.
[6] Xu Z, Liu J, Choung J W, et al. International Journal of Mineral Processing, 2003, 68,183.
[7] Liu J, Zhang M, Zeng Y. Journal of China University of Mining & Technology,2010,39(1),59 (in Chinese).
刘炯天,张明青,曾艳. 中国矿业大学学报,2010,39(1),59.
[8] Kourki H, Famili M H N. Powder Technology, 2012,221,137.
[9] Yin W, Wang J. Transactions of Nonferrous Metals Society of China, 2014,24,3682.
[10] Zhang M, Liu J, Wang Y. Journal of China Coal Society, 2008(9),1058 (in Chinese).
张明青,刘炯天,王永田. 煤炭学报,2008(9),1058.
[11] Li D, Yin W, Liu Q, et al. Minerals Engineering,2017,114,74.
[12] Zhao H, You C, Qi H, et al. Journal of Engineering Thermophysics, 2008(1),78 (in Chinese).
赵海亮,由长福,祁海鹰,等. 工程热物理学报,2008(1),78.
[13] Gui X, Xing Y, Rong G, et al. Powder Technology, 2016,301,349
[14] Perdew J P. Kurth S. Lecture Notes in Physics,2003,620,1.
[15] Chen J, Min F, Liu L, et al. Applied Surface Science, 2017,419,241.
[16] Li B, Liu S, Guo J, et al. Applied Surface Science,2018,456,215.
[17] Clark S J, Segall M D, Pickard C J, et al. Zeitschrift fuer Kristallograp-hie, 2005,220 (5-6),567.
[18] Perdew J P, Burke K, Ernzerhof M. Physical Review Letters,1996,77,3865.
[19] Hu X L, Michaelides A W. Surface Science,2008,602(4), 960.
[20] Bish D L. Clays & Clay Miner,1993,41,738.
[21] Monkhorst H J, Pack J D. Physical Review B,1976,13,5188.
[22] Chen J, Min F, Liu L, et al. Journal of China Coal Society,2016,41(12),3115 (in Chinese).
陈军,闵凡飞,刘令云,等. 煤炭学报,2016,41(12),3115.
[23] Chen J. Characteristics and mechanism research on hydrophobic aggregation of fine particles in high muddied coal slurry water. Doctor’s thesis, Anhui University of Science and Technology, China, 2017 (in Chinese).
陈军. 高泥化煤泥水中微细颗粒疏水聚团特性及机理研究. 博士学位论文,安徽理工大学,2017.
[24] Chen J H. The solide physics of sulphide minerals flotation, Central South University Press, China, 2015 (in Chinese).
陈建华. 硫化矿物浮选固体物理研究, 中南大学出版社,2015.
[25] Chen J, Min F, Liu L, et al. Journal of China Coal Society,2016,41(12),3115 (in Chinese).
陈军,闵凡飞,刘令云,彭陈亮. 煤炭学报,2016,41(12),3115 .
[26] Peng C, Min F, Liu L, et al. Applied Surface Science, 2016,387,308.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[4] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[5] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[8] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[9] 朱亚明, 赵春雷, 刘献, 赵雪飞, 高丽娟, 程俊霞. 煤沥青中甲苯可溶物的基础物性研究[J]. 材料导报, 2019, 33(2): 368-372.
[10] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[11] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[12] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[13] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[14] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[15] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed