Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 257-263    https://doi.org/10.11896/cldb.201902011
  无机非金属及其复合材料 |
复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构
潘清1, 陈婷2, 潘锐之1, 刘宝1, 李东旭1
1 南京工业大学材料科学与工程学院,南京 210009
2 泰州职业技术学院经济与管理学院,泰州 225300
Mechanical Properties and Microstructure of Cementitious Materials Incorporated with Calcium Sulfate Whiskers and Silica Fume
PAN Qing1, CHEN Ting2, PAN Ruizhi1, LIU Bao1, LI Dongxu1
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009
2 Gollege of Economic and Management, Taizhou Polytechnic College, Taizhou 225300
下载:  全 文 ( PDF ) ( 5325KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 提高水泥石性能的有效方法之一是限制微裂纹扩散。本工作研究了一种新型纳米纤维材料CaSO4晶须,实验结果表明,加入CaSO4晶须能够提高水泥的抗压、抗折强度。同时对水泥的微观结构进行了表征,并分析了CaSO4晶须增韧机理。通过SEM观察了晶须拔出、裂纹偏转和晶须桥接等微观构成,表明适当的界面粘结强度有助于提高水泥中CaSO4晶须的性能。此外,本工作还考察了添加硅灰对含CaSO4晶须的水泥基材料的影响,发现硅灰使水泥水化热的放热峰明显增大,放热峰提前出现,总热量释放增加。通过TG-DSC分析得出硅灰在水泥中能促进了C-S-H凝胶的形成。利用压汞实验进一步证实了水泥的孔隙结构和孔径分布的影响。本研究认为硅灰作为一种优秀的胶凝充填材料,在改善水泥和晶须界面时具有巨大的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘清
陈婷
潘锐之
刘宝
李东旭
关键词:  硫酸钙晶须  硅灰  强度  力学性能  微观结构  增韧机理    
Abstract: It is a quite effective method to improve the performance of cement-based composites by restricting the propagation and spread of microcracks. In this study, a new type of microfibrous material, calcium sulfate whiskers (CaSO4 whiskers) were incorporated in order to enhance the compressive strength and flexual strength of cement mortar. The mechanical properties were tested, and it was found that the addition of CaSO4 whiskers improved the compressive strength and flexural strength of cement mortar. Scanning electron microscopy observation confirmed that microscopic toughening mechanism of the whiskers mainly involves whisker pullout, crack deflection and whisker bridging, demonstrating the positive effect of an appropriate interfacial bonding strength to achieve full potential of whiskers in cementitious composites. The exothermic peak of cement hydration heat increased significantly after adding silica fume. Exothermic peak appeared in advance, the total heat release increased. Silica fume promoted the formation of C-S-H gel in cementitious composites, showed by thermogravimetric differential scanning calorimetry (TG-DSC) analysis. Further work using the mercury intrusion porosity test confirms the effect on the pore structure and the pore size distribution of cement mortar. It is concluded that silica fume, as a promising supplementary cementitious material, has a great potential for improving the interface between whiskers and cement.
Key words:  calcium sulfate whisker    silica fume    reinforcement    mechanical properties    microstructure    toughening mechanism
                    发布日期:  2019-01-31
ZTFLH:  TQ172  
基金资助: 国家自然科学基金(51872137)
作者简介:  潘清,1993年12月生,硕士研究生,就读于南京工业大学,主要从事纳米改性胶凝材料方面的研究。李东旭,1956年2月生。南京工业大学材料科学与工程学院博导、教授。
引用本文:    
潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
PAN Qing, CHEN Ting, PAN Ruizhi, LIU Bao, LI Dongxu. Mechanical Properties and Microstructure of Cementitious Materials Incorporated with Calcium Sulfate Whiskers and Silica Fume. Materials Reports, 2019, 33(2): 257-263.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902011  或          http://www.mater-rep.com/CN/Y2019/V33/I2/257
1 Altun F, Tanrioven F, Dirikgil T. Construction and Building Materials,2013, 44,565.
2 Cao M, Xu L, Zhang C. Journal of the Chinese Chemical Society,2016,40,14.
3 Becher P F. Journal of the American Ceramic Society,1991,74,255.
4 Becher P F, Hsueh C H. Journal of the American Ceramic Society,1988,71,1050.
5 Berodier E, Scrivener K. Journal of the American Ceramic Society,2014,97,3764.
6 Betterman L. R, Ouyang C, Shah S P. Advanced Cement Based Mate-rials,1995,2,53.
7 Cwirzen A, Habermehl-Cwirzen K. Advanced Materials Research,2008,20,65.
8 Faber K T, Evans A G. Acta Materialia,1983,31,565.
9 Givi A N, Rashid S A, Aziz F, et al. Composites Part B Engineering,2010,41,673.
10 Gutteridge W A, Dalziel J A. Cement and Concrete Composites,1990,20,853.
11 Ji H, Huang Z, Chen K, et al. Powder Technology,2014,252,51.
12 Konsta M S, Metaxa Z S, Shah S P. Cement and Concrete Research,2010,40,1052.
13 Konsta M S, Metaxa Z S, Shah S P. Cement and Concrete Composites, 2010,32,110.
14 Land G, Stephan D. Journal of Materials Science,2012,47,1011.
15 Lawler J S, Wilhelm T, Zampini D, et al. Materials and Structuresl,2003,36,197.
16 Li G Y, Wang P M, Zhao X. Cement and Concrete Composites,2007,29,377.
17 Li H, Xiao H G, Ou J P. Cement and Concrete Research,2004,34,435.
18 Loos M R, Schulte K. Materials and Structuresl,2011,20,350.
19 Lothenbach B, Scrivener K, Hooton R D. Cement and Concrete Research,2011,41,1244.
20 Lu Z, Hou D, Ma H, et al. Construction and Building Materials,2016,119,107.
21 Qian J, Yu J, Sun H. Journal of the Chinese Chemical Society,2017,28,14.
22 Luo J, Hou D, Li Q, et al. Construction and Building Materials,2017,131,512.
23 Materazzi A L, Ubertini F, D’Alessandro. Cement and Concrete Compo-sites,2013,37,2.
24 Mueller F A, Gbureck U, Kasuga T, et al. Journal of the Chinese Chemical Society,2007,90,3694.
25 Pierre P, Pleau R, Pigeon M. Journal of Materials in Civil Engineering,1999,11,317.
26 Sanchez F, Sobolev K. Construction and Building Materials,2010,24,2060.
27 Scrivener K L, Juilland P, Monteiro P M. Cement and Concrete Research,2015,78,38.
28 Toutanji H A, Elkorchi T. Cement and Concrete Research,1995,25,1591.
29 Tyson B M, Abu Al-Rub R K, Yazdanbakhsh A. Cement and Concrete Research,1992,22,597.
30 Yang R H, Liu B Y, Wu Z W. Gement and Concrete Research,1990,20,385.
31 Yang R H, Liu B Y, Wu Z W. Cement and Concrete Research,1990,20,385.
32 Yao W, Li J, Wu K. Cement and Concrete Research,2003,33,27.
33 Yuan W, Cui J, Xu S. Journal of Materials Science and Technology, 2016,32,1352.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[9] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[10] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[11] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[12] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[13] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[14] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[15] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed