Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 251-256    https://doi.org/10.11896/cldb.201902010
  无机非金属及其复合材料 |
水泥砂浆弹性模量随温度的演化规律
聂光临1,2, 包亦望1,2, 田远1,2, 万德田1,2
1 中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024
2 中国建材检验认证集团股份有限公司,北京 100024
Evolution of Elastic Modulus of Cement Mortar as a Function of Temperature
NIE Guanglin1,2, BAO Yiwang1,2, TIAN Yuan1,2, WAN Detian1,2
1 State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd, Beijing 100024
2 China Building Material Test & Certification Group Co., Ltd, Beijing 100024
下载:  全 文 ( PDF ) ( 3195KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 弹性模量作为水泥砂浆重要的性能参数和结构设计参数,对于保障构件的服役安全性和可靠性至关重要。为解决水泥砂浆在低温与高温服役条件下的弹性模量准确测量的技术难题,将修正缺口环法与相对法结合(称为修正缺口环相对法),成功测得了硅酸盐水泥砂浆在-70~800 ℃下的弹性模量,并研究了饱水与干燥砂浆试样的弹性模量随温度变化的演变规律。测试结果表明:由室温降至-70 ℃,冰的填充与胶粘作用会使得饱水砂浆的弹性模量增加32.67%,且模量增长速率随着温度的降低逐渐增大;而干燥砂浆的水分含量较低,其弹性模量在降温过程中基本保持不变。由室温升至800 ℃过程中,由于水化产物的高温脱水分解与微结构劣化,饱水砂浆的弹性模量降低了93.78%,而干燥砂浆的弹性模降低了83.51%,且模量衰减速率随着温度的升高而逐渐降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂光临
包亦望
田远
万德田
关键词:  修正缺口环法  相对法  水泥砂浆  弹性模量  低温  高温    
Abstract: As a crucial performance parameter and structural design parameter of the cement mortar, the elastic modulus is of great importance to ensure safety and reliability of the cement-based components in service. Aiming at conquering the technical problem that the elastic modulus of cement mortar under low and high temperature service conditions cannot be measured accurately, an innovative method (named as the relative modified split ring method) combining the modified split ring method and the relative method was employed in this study, the elastic modulus of Portland cement mortar at -70—800 ℃ was successfully measured. Besides, the evolution law of elastic modulus of water-saturated and dry mortar samples as a function of temperature is investigated. The results indicated that there was a 32.67% increase of elastic modulus of water-saturated mortar, in the range from ambient temperature to -70 ℃, owing to the filling effect and gluing effect of the ice, and the growth rate of modulus increased gradually with the drop of test temperature. While the modulus of the dry piece remained unchanged in the process of cooling, thanks to its low water content. Due to the dehydration and decomposition of the hydration products and the microstructure degradation at high temperature, the elastic modulus of the water-saturated and dry samples declined by 93.78% and 83.51%, respectively, with the increasing temperature from room temperature to 800 ℃. And the modulus decreasing velocity was gradually reduced with increase of test temperature.
Key words:  modified split ring method    relative method    cement mortar    elastic modulus    low temperature    high temperature
                    发布日期:  2019-01-31
ZTFLH:  TU502+.6  
基金资助: 国家自然科学基金(51472227);国家高技术研究发展计划(863计划)(2015AA034204);国家重点研发计划(2017YFB0310400)
作者简介:  包亦望,中国建筑材料科学研究总院教授,中国建材检验认证集团股份有限公司首席科学家,1990年毕业于中国建筑材料科学研究总院,获材料学博士学位。ywbao@ctc.ac.cn
引用本文:    
聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
NIE Guanglin, BAO Yiwang, TIAN Yuan, WAN Detian. Evolution of Elastic Modulus of Cement Mortar as a Function of Temperature. Materials Reports, 2019, 33(2): 251-256.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902010  或          http://www.mater-rep.com/CN/Y2019/V33/I2/251
1 Zhang N, Liao J, Ji W Z, et al. Journal of the Chinese Ceramic Society,2014,42(11),1404(in Chinese).
张楠,廖娟,戢文占,等.硅酸盐学报,2014,42(11),1404.
2 Kogbara R B, Iyengar S R, Grasley Z C, et al. Construction and Buil-ding Materials,2013,47,760.
3 Dahmani L. Strength of Materials,2011,43(5),526.
4 Farzadnia N, Ali A A A, Demirboga R. Cement and Concrete Research,2013,54,43.
5 Gencel O. Fire and Materials,2012,36,217.
6 Hassen S, Colina H. Materials and Structures,2012,45,1861.
7 Zheng L, Huo X S, Yuan Y. Construction and Building Materials,2008,22(5),939.
8 Rao S K, Sravana P, Rao T C. International Journal of Pavement Research and Technology,2016,9,289.
9 ASTM C580-02, Standard Test Method for Flexural Strength and Modulus of Elasticity of Chemical Resistant Mortars, Grouts, Monolithic Surfa-cings, and Polymer Concretes.
10 Wan D T, Bao Y W, Liu X G, et al. Advanced Materials Research,2011,177,114.
11 Bao Y W, Nie G L, Wan D T. Journal of the Chinese Ceramic Society,2017,45(8),1054(in Chinese).
包亦望,聂光临,万德田.硅酸盐学报,2017,45(8),1054.
12 ISO 18558:2015(E) Fine ceramics (advanced ceramics, advanced technical ceramics) —Test method for determining elastic modulus and bending strength of ceramic tube and rings.
13 刘鸿文.材料力学下册,第三版.高等教育出版社,1992.
14 Beer F P, Johnston E R, Dewolf J T, et al. Mechanics of Materials. Sixth edition, America: Mc Graw-Hill,2012.
15 Liu Z, Bao Y W, Wan D T, et al. Ceramics International,2015,41,12835.
16 Wang W Y. Cement,2000(7),1(in Chinese).
王文义.水泥,2000(7),1.
17 Liu X M, Zhang M H, Chia K S, et al. Cement and Concrete Composites,2016,73,289.
18 Yan J B, Xie J. Construction and Building Materials,2017,141,410.
19 Chatterji S. Cement and Concrete Research,1999,29,627.
20 Pineaud A, Pimienta P, Rémond S, et al. Construction and Building Materials,2016,112,747.
21 Xiong M X, Liew J Y R. Materials and Design,2016,104,414.
22 Odelson J B, Kerr E A, Vichit-Vadakan W. Cement and Concrete Research,2007,37,258.
23 Siddiqui M S, Grasley Z, Fowler D W. Construction and Building Mate-rials,2016,112,996.
[1] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[2] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[3] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[4] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[5] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[6] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[7] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[8] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[9] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[10] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[11] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[12] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[13] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[14] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[15] 付晓刚, 张金权, 秦博, 马浩然, 龙斌. 氢化锆与高温钠的相容性研究[J]. 材料导报, 2019, 33(11): 1801-1804.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed