Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2524-2531    https://doi.org/10.11896/cldb.18070092
  无机非金属及其复合材料 |
碳化硼粉体合成方法的研究进展
种小川1,肖国庆1,丁冬海1,2,3,白冰1
1.西安建筑科技大学材料与矿资学院,西安 710055
2.西安建筑科技大学材料科学与工程博士后流动站,西安 710055
3.中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,洛阳 471039
Research Progress of Synthesis Methods of Boron Carbide Powder
CHONG Xiaochuan1, XIAO Guoqing1, DING Donghai1,2,3, BAI Bing1
1.College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
2.Postdoctoral Mobile Research Station of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’ an 710055
3.State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 3125KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种难熔非金属超硬碳化物材料,碳化硼(B4C)逐渐得到学者们的广泛关注,关于B4C粉体的制备方法和应用已成为重要研究热点之一。B4C不仅有超高的硬度,同时有高熔点、高的中子吸收性、化学稳定、低密度等诸多优异性能,被大量地应用于机械装备、磨具磨料、催化载体等领域。目前,B4C粉体在耐火材料防氧化剂、高温热电偶、防护装甲、核反应堆屏蔽材料等领域的应用潜力被不断挖掘,但传统制备方法得到的B4C粉体粒度不均匀、杂质含量高,尤其是颗粒粗大、形貌单一,使B4C的优异性能难以充分发挥,严重限制了其应用。相对于传统的B4C粉体,高纯度、低维度、粒度均匀的B4C粉体能有效地改善B4C材料的烧结性能,提高其断裂韧性。因此,制备高纯度、尺寸均匀、小粒径、高长径比的B4C粉体更有意义。
然而,B4C是由90%以上的共价键组成且合成过程的动力学、热力学条件复杂,使得B4C粉体合成困难,尤其是想通过低成本、简单工艺要求的方法合成高性能、应用领域广泛的B4C粉体。因此,越来越多的研究者通过多种途径改进合成方法以得到性能优异的B4C粉体,从而改善B4C粉体的烧结性能、提高其断裂韧性,以此来满足越来越广泛的应用领域要求和适用于越来越苛刻的应用环境。
近年来,许多文献报道通过多种方法都可以得到高纯度、低维度、粒度均匀的B4C粉体。元素合成法制备的B4C粉体虽然产量较小,但是一般纯度较高,工业中最常用的碳热还原法得到的B4C的最小粒度为20~30 nm,快速节能的自蔓延高温合成法可以得到厚度为10~50 nm的片状B4C,棒状、纤维状等特殊形貌的B4C主要通过化学气相沉积法合成,而溶剂热还原法、VLS生长法、粒子束合成法等一些新的合成方法也都获得了纳米尺寸的B4C粉体。这些最新的成果主要通过改变原料种类、提高原料品质、采用不同形貌的原料和催化剂及多种方法结合使用等手段来实现。此外,对B4C生成过程的理论研究也促进了各种合成方法的不断发展。
本文对B4C的合成方法进行综述,重点对元素合成法、碳热还原法、自蔓延高温合成法、化学气相沉积法用于制备高纯度、低维B4C的发展和研究现状进行了介绍,同时展望了B4C制备方法的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
种小川
肖国庆
丁冬海
白冰
关键词:  碳化硼  碳热还原  自蔓延高温合成    
Abstract: As a refractory non-metallic superhard carbide material, boron carbide (B4C) has attracted more and more attention, and the research on its preparation methods and application has became one of the hot topics. B4C not only has ultra-high hardness, but also has many excellent properties such as high melting point, high neutron absorption, chemical stability, low density and so on. It has been widely used in mechanical equipment, abrasives, and catalytic carriers. However, with the potential of B4C powder in the field of refractory antioxidants, high temperature thermocouples, protective armor, and nuclear reactor shielding materials and so on. The B4C powder obtained by the traditional preparation met-hod has uneven particle size and high impurity content, especially the coarse particles and single morphology, which can not fully exert the excellent performance of B4C, and severely limits the application of B4C powder. Compared with the traditional B4C powder, the powder with high purity, low dimension and uniform particle size can effectively improve the sintering performance and fracture toughness of B4C materials. Therefore, it is more meaningful to prepare B4C powders with high purity, uniform size, small particle size, and high aspect ratio.
However, it is difficult to synthesize B4C powders because B4C is composed of more than 90% covalent bonds and the kinetic and thermodynamic conditions of the synthesis process are complicated. Especially, it is difficult to synthesize B4C powders with high performance and wide application fields by low cost and simple process requirements. Therefore, more and more researchers have improved the synthesis method in various ways to obtain B4C powder with excellent performance, thereby improving the sintering properties of B4C powder and improving fracture toughness, so as to meet more and more application fields and more demanding application environments.
In recent years, many literatures reported that B4C powders with high purity, low dimension and uniform particle size can be obtained by various methods. B4C powders prepared by elemental synthesis method have small output but high purity in general. The minimum particle size of B4C obtained by the most commonly used carbothermal reduction method in the industry is 20—30 nm. The fast and energy-saving self-propagating high-temperature synthesis method can obtain a sheet-like B4C with a thickness of 10—50 nm. B4C with special morphology such as rods and fibers is mainly synthesized by chemical vapor deposition. Nano-sized B4C powders have also been obtained by some new synthetic methods such as solvothermal reduction, VLS growth, and particle beam synthesis. These latest achievements are mainly achieved by changing the types of raw materials, improving the quality of raw materials, using raw materials with different morphologies, using catalysts, and combining various methods. In addition, theoretical research on the B4C generation process has also contributed to the development of various synthetic methods.
The recent progress of synthesis methods of B4C was reviewed, focusing on the development and research status of elemental synthesis, carbothermal reduction, self-propagating high-temperature synthesis, and chemical vapor deposition for the preparation of high-purity, low-dimensional B4C. Additionally, the development directions in synthesis of B4C were out looked.
Key words:  boron carbide    carbothermal reduction    self-propagation high-temperature synthesis
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金(51572212;51502236;51772236);中国博士后科学基金(2016M602940XB);先进耐火材料国家重点实验室开放课题
作者简介:  种小川,2016年毕业于西安建筑科技大学,获得工学学士学位。现为西安建筑科技大学材料与矿资学院硕士研究生,在肖国庆教授指导下进行研究。目前主要研究领域为燃烧合成碳化硼粉体及应用。
丁冬海,博士,西安建筑科技大学材料与矿资学院副教授,硕士生导师,陕西省优秀博士学位论文获得者,2012年获西北工业大学获材料学博士学位,2014年晋升副教授,2016.3—2017.3国家留学基金委资助英国埃克塞特大学访问学者。主要从事结构功能一体化陶瓷基复合材料研究,以第一作者及合作者在等国内外期刊发表学术论文50多篇,其中第一作者SCI收录15篇,最高影响因子6.6,论文被引用次数超过300次(Google)。目前主持国家级科研项目1项、省部级科研项目5项目。受邀担任Carbon、Composites A、Ceramics International、Materials Science and Engeering B等10余种国际期刊审稿人。
引用本文:    
种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
CHONG Xiaochuan, XIAO Guoqing, DING Donghai, BAI Bing. Research Progress of Synthesis Methods of Boron Carbide Powder. Materials Reports, 2019, 33(15): 2524-2531.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070092  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2524
[1] Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics, Higher Education Press, China,2010(in Chinese).
金格瑞,鲍恩,乌尔曼.陶瓷导论,高等教育出版社,2010.
[2] Zhang X J. Synthesis and characterization of boron carbide precursor polymer and B-C ceramic microspheres. Master’s Thesis, Southwest University of Science and Technology, China,2016(in Chinese).
张晓娟.聚碳/硼烷先驱体的合成及B-C陶瓷微球的制备与性能研究.硕士学位论文,西南科技大学,2016.
[3] Moskovskikh D O, Paramonov K A, Nepapushev A A, et al. Ceramics International,2017,43(11),8190.
[4] Zhang X, Zhang Z, Wen R, et al. Ceramics International,2018,44(2),2615.
[5] Cheng C, Reddy K M, Hirata A, et al. Journal of the European Ceramic Society,2017,37(15),4514.
[6] Moshtaghioun B M, García D G, Rodríguez A D. Materials & Design,2015,88,287.
[7] Wang H, Wang J L, Gou Y Z. Journal of Inorganic Materials,2017,32(8),785(in Chinese).
王浩,王金龙,苟燕子.无机材料学报,2017,32(8),785.
[8] Thevenot F. Key Engineering Materials,1991,56-57,59.
[9] Asadikiya M, Zhang C, Rudolf C, et al. Ceramics International,2017,43(14),11182.
[10] Sedlák R, Kovalíková A, Múdra E, et al. Journal of the European Ceramic Society,2017,37(12),3773.
[11] Dimitar D, Edward A. Comptes Rendus de Academie Bulgare des Sciences,2015,68(8),945.
[12] Shawgi N, Li S X, Wang S, et al. Ceramics International,2018,44(8),9887.
[13] Suri A K, Subramanian C, Sonber J K, et al. Metallurgical Reviews,2010,55(1),4.
[14] Domnich V, Reynaud S, Haber R A, et al. Journal of the American Ceramic Society,2011,94(11),3605.
[15] Zhang X, Zhang Z, Nie B, et al. Ceramics International,2018,44(6),7291.
[16] Turatti A M, Pereira A S. Ceramics International,2017,43(11),7970.
[17] Ma L, Xie K Y, Toksoy M F, et al. Materials Characterization,2017,134,274.
[18] Zhang M, Yuan T, Li R, et al. Ceramics International,2017,44(4),3571.
[19] Cimpoeru S, Crouch I G, Ryan S, et al. The science of armour materials, Woodhead Publishing in Materials, Amsterdam,2016.
[20] Farzaneh F, Golestanifard F, Sheikhaleslami M S, et al. Ceramics International,2015,41(10),13658.
[21] Ayfer, Toptan, Kerti, et al. Materials Letters,2014,128(1),224.
[22] Ebrahimi S, Heydari M S, Baharvandi H R, et al. International Journal of Refractory Metals & Hard Materials,2016,57,78.
[23] Murthy T S R C, Ankata S, Sonber J K, et al. Ceramics Silikaty,2018,62(1),15.
[24] Devi H V S, Swapna M S, Ambadas G, et al. Applied Physics A,2018,124(4),297.
[25] Li P, Jian L, Wang M L, et al. Nuclear Power Engineering,2012,33(s2),110(in Chinese).
李蓓,简敏,王美玲,等.核动力工程,2012,33(s2),110.
[26] Krutskii Y L, Bannov A G, Sokolov V V, et al. Nanotechnologies in Russia,2013,8(3-4),191.
[27] Jiang G J, Xu J Y, Zhuang H R, et al. Ceramics International,2011,37(5),1689.
[28] Zhang S, Lu W Z, Wang C B, et al. Ceramics International,2012,38(2),895.
[29] Heian E M, Khalsa S K, Lee J W, et al. Journal of the American Ceramic Society,2010,87(5),779.
[30] Kharlamov A I, Kirillova N V, Kaverina S N. Theoretical & Experimental Chemistry,2003,39(3),147.
[31] Yamada K. Journal of the American Ceramic Society,2010,79(4),1113.
[32] Chang B, Gersten B L, Szewczyk S T, et al. Applied Physics A,2007,86(1),83.
[33] Chen S, Wang D Z, Huang J Y, et al. Applied Physics A,2004,79(7),1757.
[34] Zeng H, Kan Y M, Xv C M, et al. Journal of Inorganic Materials,2011,26(10),1101(in Chinese).
曾洪,阚艳梅,徐常明,等.无机材料学报,2011,26(10),1101.
[35] Song N N, Li X D. Journal of Crystal Growth,2017,481,11.
[36] Xv J. Preparation and characterization of three-dimensional network structure nano boron carbide. Master’s Thesis, Southwest University of Science and Technology, China,2016(in Chinese).
徐娟.三维纳米网状结构碳化硼的制备及表征.硕士学位论文,西南科技大学,2016.
[37] Schwetz K A, Greim J. Ullmann’s Encyclopedia of Industrial Chemistry, Barbara E ed., Wiley-VCH Verlag GmbH & Co. KGaA, Germany,2006,pp.219.
[38] Alizadeh A, Taheri-Nassaj E, Ehsani N. Journal of the European Ceramic Society,2004,24(10),3227.
[39] Watts J L, Talbot P C, Alarco J A, et al. Ceramics International,2016,43(2),2650.
[40] Najafi A, Golestani-Fard F, Rezaie H R, et al. Ceramics International,2012,38(5),3583.
[41] Shawgi N, Li S X, Wang S, et al. Journal of Sol-Gel Science and Techno-logy,2017,82(2),1.
[42] Xu J, Liu X, Wang S Q, et al. Ceramics International,2017,43(18),16787.
[43] Merzhanov A G, Borovinskaya I P. Combustion Science & Technology,1975,10(5-6),195.
[44] Singh P, Singh B, Kumar M, et al. Ceramics International,2014,40(9),15331.
[45] Jia B R, Qin M L, Li H, et al. Materials Review A: Review Papers, 2010,24(5),32(in Chinese).
贾宝瑞,秦明礼,李慧,等.材料导报:综述篇,2010,24(5),32.
[46] Lee J H, Won C W, Joo S M, et al. Journal of Materials Science Letters,2000,19(11),951.
[47] Wang L L, Munir Z A, Holt J B. Journal of the American Ceramic Society,1995,78(3),756.
[48] Alkan M, Sonmez M S, Derin B, et al. Solid State Sciences,2012,14(11-12),1688.
[49] Amin P, Nourbakhsh A, Asgatian P, et al. Iranian Journal of Materials Science and Engineering,2016,13(3),12.
[50] Zhang L. Research on self-propagating high-temperature synthesis and sintering properties of fine B4C powder. Master’s Thesis, Wuhan University of Technology,China,2012(in Chinese).
张力.自蔓延高温合成碳化硼超细粉体及其烧结性能研究.硕士学位论文,武汉理工大学,2012.
[51] Sharifi E M, Karimzadeh F, Enayati M H. Advanced Powder Technology,2011,22(3),354.
[52] Nikzad L, Ebadzadeh T, Vaezi M R, et al. Micro & Nano Letters,2012,7(4),366.
[53] Forouzan M R, Mousavian R T, Sharif T, et al. Journal of Thermal Analysis & Calorimetry,2015,122(2),579.
[54] Wang J L, Long F, Wang W M, et al. Ceramics International,2016,42(6),6969.
[55] Wang L L, Munir Z A, Holt J B. Scripta Metallurgica Et Materialia,1994,31(1),93.
[56] Nersisyan H H, Yoo B U, Joo S H, et al. Chemical Engineering Journal,2015,281,218.
[57] Atasoy A. International Journal of Refractory Metals & Hard Materials,2010,28(5),616.
[58] Berchmans L J, Mani V, Amalajyothi K. International Journal of Self-Propagating High-Temperature Synthesis,2009,18(1),60.
[59] And F F X, Bando Y. Journal of Physical Chemistry B,2004,108(23),7651.
[60] Andrievski R A. Russian Chemical Reviews,2012,81(6),549.
[61] Sezer A O, Brand J I. Materials Science & Engineering B,2001,79(3),191.
[62] Lopez-Quintas I, Oujja M, Sanz M, et al. Applied Surface Science,2015,328,170.
[63] Sun G D, Deng J L, Li H, et al. Rare Metal Materials & Engineering,2015,44(4),826.
[64] Oliveira J C, Paiva P, Oliveira M N, et al. Applied Surface Science,1999,138(1),159.
[65] Zeng B, Feng Z, Li S W, et al. Ceramics International,2009,35(5),1877.
[66] Chaudhari P, Singh A, Topkar A, et al. Nuclear Instruments & Methods in Physics Research,2015,779(3),33.
[67] Ma S F, Liang J, Zhao J F. Chinese Journal of Inorganic Chemistry,2009,25(6),1050(in Chinese).
马淑芳,梁建,赵君芙,等.无机化学学报,2009,25(6),1050.
[68] Jazirehpour M, Alizadeh A. Journal of Physical Chemistry C,2009,113(5),1657.
[69] Dong B, Oyelade A, Nandagopal N, et al. Surface & Coatings Technology,2016,314,45.
[70] Santos M J, Silvestre A J, Conde O. Surface & Coatings Technology,2002,151-152,160.
[71] Shi L, Gu Y L, Chen L Y, et al. Solid State Communications,2003,128(1),5.
[72] Bao L H, Li C, Tian Y, et al. Chinese Physics B,2008,17(11),4247.
[73] Ronning C, Schwen D, Eyhusen S, et al. Surface & Coatings Technology,2002,158(3),382.
[74] Todorovic-markovic B, Draganici I, Vasiljevic-radovic D, et al. Applied Surface Science,2007,253(8),4029.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[3] 张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 《材料导报》期刊社, 2018, 32(8): 1352-1356.
[4] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[5] 尹月, 马北越, 张博文, 李世明, 于景坤, 张战, 李光强. 添加La2O3对粉煤灰合成Al2O3-SiC复合粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 111-114.
[6] 张 薇,肖国庆,丁冬海. 硼砂对自蔓延高温合成ZrB2粉体的影响[J]. 《材料导报》期刊社, 2017, 31(24): 125-128.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed