Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 936-940    https://doi.org/10.11896/cldb.201906005
  无机非金属及其复合材料 |
二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析
张煜1,2, 聂登攀1,3, 曹建新1,2
1 贵州大学资源与环境工程学院,贵阳 550025
2 贵州大学化学与化工学院,贵阳 550025
3 贵州民族大学化学工程学院,贵阳 550025
Impact of Silica Impurities in Barite Ore on the Efficiency of Barite Carbothermal Reduction and Its Phase Transition Behavior
ZHANG Yu1,2, NIE Dengpan1,3, CAO Jianxin1,2
1 College of Resource and Environmental Engineering,Guizhou University,Guiyang 550025
2 School of Chemistry and Chemical Engineering,Guizhou University,Guiyang 550025
3 School of Chemical Engineering,Guizhou Minzu University,Guiyang 550025
下载:  全 文 ( PDF ) ( 2419KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化硅(SiO2)是重晶石矿中的主要杂质,本工作以贵州镇宁重晶石矿为研究对象,对SiO2在重晶石中的赋存状态及其对重晶石碳热还原反应的影响进行了研究,并采用XRD物相分析结合HSC热力学分析对SiO2在重晶石碳热还原过程中的相变行为进行了探讨。结果表明:重晶石中SiO2主要以独立矿物石英的形式与硫酸钡伴生,并存在少量SiO2以硫酸钡包裹体和隐晶质存在。SiO2对重晶石碳热还原反应的影响主要是以独立矿物形式存在的SiO2影响为主,在重晶石碳热还原过程中,SiO2杂质分散在体系中,由石英相向鳞石英相及方石英相转变,对体系传热、传质形成一定阻碍,使得体系最佳反应温度升高约100 ℃。同时,SiO2晶型重构过程活性高,使其易与体系中钡盐反应生成BaSiO3及Ba2SiO4,从而导致体系硫化钡转化率降低,酸溶性钡转化率增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张煜
聂登攀
曹建新
关键词:  重晶石  二氧化硅杂质  赋存状态  碳热还原  相变    
Abstract: Silica is the main impurity in barite. Taking the barite mine from Zhenning, Guizhou province as the research object, the occurrence state of SiO2 in barite and its impact on barite carbothermal reduction were studied. XRD phase analysis and HSC thermodynamic analysis were carried out to study the phase transformation behavior of SiO2. The results showed that SiO2 in barite was mainly associated with barium sulfate in the form of independent mineral quartz, and a small amount of SiO2 existed in barium sulfate inclusions and cryptocrystalline. SiO2 in the form of independent minerals played a dominant role in affecting the carbothermal reduction of barite. In the carbothermal reduction process of barite, SiO2 impurities were dispersed in the system and experienced crystal transition from quartz phase to squamous quartz phase and cristobalite phase, which blocked heat transfer and mass transfer of the system and resulted in a 100 ℃ rise of the optimized carbothermal reaction temperature. Meanwhile, the high activity of SiO2 in the process of crystal reconstruction made it easy to react with barium salt to form BaSiO3 and Ba2SiO4, which caused the decrease of barium sulfide conversion and the increase of acid-soluble barium conversion.
Key words:  barite    silicon impurity    occurrence state    carbothermal reduction    phase transformation
                    发布日期:  2019-04-03
ZTFLH:  TQ132.3  
基金资助: 贵州省科技支撑计划项目([2017]2892;[2017]2023)
作者简介:  张煜,2003年毕业于贵州大学材料学专业,获工学硕士学位。现为贵州大学副教授,硕士研究生导师,主要从事矿产资源综合利用领域的研究。曹建新,贵州大学,教授,博士研究生导师,主要研究领域为绿色化工与清洁能源技术。
引用本文:    
张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
ZHANG Yu, NIE Dengpan, CAO Jianxin. Impact of Silica Impurities in Barite Ore on the Efficiency of Barite Carbothermal Reduction and Its Phase Transition Behavior. Materials Reports, 2019, 33(6): 936-940.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906005  或          http://www.mater-rep.com/CN/Y2019/V33/I6/936
1 Sanad M M S, Rashad M M. International Journal of Minerals, Metallurgy and Materials, 2016,23(9),991.
2 Li W Y, Yu H Y. China barite deposit. Geological Publishing House, China,1991(in Chinese).
李文炎,余洪云. 中国重晶石矿床,地质出版社,1991.
3 Yuan J G, Qu Y Y, Liu X L, et al.Modern Chemical Industry, 2017,37(6),1(in Chinese).
袁建国, 屈云燕, 柳霞丽, 等.现代化工,2017,37(6),1.
4 Wang Q W, Zhang Y Y. Modern Chemical Industry, 2014,34(12), 5(in Chinese).
王庆伟, 张元元.现代化工,2014,34(12),5.
5 Mcketta J J, Executive E D. Encyclopedia of chemical processing and design, vol. 4, Marcel Dekker, New York,1976.
6 Jamshidi S, Salem A. Thermochimica Acta,2010,503,108.
7 Salem A, Osgouei Y T. Materials Research Bulletin,2009,44,1489.
8 Jyotsna A. Materials Today: Proceedings,2017,4,104.
9 Pelovski Y, Taniguchi M. Journal of Thermal Analysis,1988,33(3),603.
10 Pelovski Y, Ninova K, Gruncharov I, et al. Journal of Thermal Analysis,1990,36(6),2037.
11 Jamshidi E, Ebrahim H A. Chemical Engineering and Processing,2008,47(9),1567.
12 Alizadeh R, Jamshidi E, Ebrahim H A. Thermochimica Acta,2007,460(1),44.
13 Hlabela P S, Neomagus H W J P, Waanders F B, et al.Thermochimica Acta,2010,498 (1-2), 67.
14 Gao J B, Yang R D, Tao P, et al. Acta Sedimentologica Sinica,2012,30(3),422(in Chinese).
高军波, 杨瑞东, 陶平, 等.沉积学报,2012,30(3),422.
15 Zhao Y. Flotation technology of low grade barite and adsorption mechanism of collectors. Master’s thesis, Kunming university of science and technology, China,2014(in Chinese).
赵阳. 低品位重晶石浮选工艺及捕收剂吸附机理研究. 硕士学位论文,昆明理工大学,2014.
16 Jamshidi S, Salem A. Thermochimica Acta,2010,503-504,108.
17 Snell F D, Hilton C L, Ettre L S. Encyclopedia of industrial chemical analysis, Interscience Publishers, New York, 1968.
18 Fang W X, Hu R Z, Su W C, et, al. Acta Petrologica Sinica,2002,18(2),247(in Chinese).
方维萱, 胡瑞忠, 苏文超, 等.岩石学报,2002,18(2),247.
19 German Iron and Steel Federation.Slag Atlas.Wang J, Peng Y Q, Mao Y W, trans. Metallurgical Industry Press, China,1989(in Chinese).
德国钢铁工程师协会. 渣图集. 王俭, 彭育强, 毛裕文, 译. 冶金工业出版社,1989.
20 Lu P W. Fundamentals of inorganic materials science: silicate physical chemistry, Wuhan Industrial University Press, China,1996(in Chinese).
陆佩文.无机材料科学基础:硅酸盐物理化学,武汉工业大学出版社,1996.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[8] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[9] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[10] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[11] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[12] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[13] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[14] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[15] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed