Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1630-1633    https://doi.org/10.11896/cldb.17090144
  无机金属及其复合材料 |
纳米氧化锆对氧化镁陶瓷抗热震性的影响
薛宗伟1, 李心慰1, 栾旭1, 罗旭东1, 徐若梦2, 吴锋1
1 辽宁科技大学高温材料与镁资源工程学院,鞍山 114051
2 沈阳广播电视大学,沈阳 110003
Effects of Nano-zirconia on Thermal Shock Resistance of Magnesia Ceramic
XUE Zongwei1, LI Xinwei1, LUAN Xu1, LUO Xudong1, XU Ruomeng2, WU Feng1
1 School of High Temperature Materials and Magnesium Resources Engineering, University of Science and Technology Liaoning, Anshan 114051
2 Shenyang Radio and Television University, Shenyang 110003
下载:  全 文 ( PDF ) ( 8758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以高纯氧化镁粉、纳米单斜氧化锆粉为原料,通过配料、成型,分别在1 350 ℃、1 450 ℃、1 550 ℃保温2 h后烧结,制备了氧化镁陶瓷试样。研究了单斜氧化锆加入量、烧结温度对氧化镁陶瓷的烧结性能和抗热震性的影响。结果表明:加入纳米单斜氧化锆可以提高氧化镁陶瓷的显微结构均匀性,降低烧结温度和促进试样的致密化;加入纳米单斜氧化锆的试样通过微裂纹增韧、相变增韧以及微裂纹偏转增韧提高氧化镁陶瓷的抗热震性。加入12%(质量分数)的纳米单斜氧化锆的样品在1 450 ℃烧结而成的试样的抗热震性最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛宗伟
李心慰
栾旭
罗旭东
徐若梦
吴锋
关键词:  氧化锆  氧化镁陶瓷  相变  显微结构  抗热震性    
Abstract: The magnesia ceramic specimens were prepared by high purity magnesia powder and nano-monoclinic zirconia powder as raw material. The specimens were sintered at 1 350 ℃, 1 450 ℃ and 1 550 ℃ for holding 2 hours, respectively. The effects of adding quantity of nano-monoclinic zirconia and sintering temperature on the sintering property and thermal shock resistance of magnesia ceramic were investigated. The results show that the densification and the microstructure homogeneity are improved, sintering temperature is decreased by adding monoclinic zirconia into magnesia ceramic. The thermal shock resistance of specimens with nano-monoclinic zirconia is improved due to mechanisms of microcrack toughening, phase transformation toughening and crack deflection toughening. The optimal scheme to improve thermal shock resistance of magnesia ceramic is adding 12wt% monoclinic zirconia and sintering at 1 450 ℃.
Key words:  zirconia    magnesia ceramic    phase transformation    microstructure    thermal shock resistance
                    发布日期:  2019-05-16
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51772139)
通讯作者:  15242205011@163.com   
作者简介:  薛宗伟,辽宁科技大学硕士研究生,主要研究方向为高温陶瓷和冶金用耐火材料。吴锋,辽宁科技大学副教授,硕士研究生导师。2005年研究生毕业于辽宁科技大学留校工作至今,其中2014—2015年到英国艾克赛特大学功能材料实验室进行学术访问。在国内外学术期刊发表论文13篇,申报国家发明专利3项,授权1项。主要研究方向为冶金新技术用耐火材料和高温陶瓷。负责完成科研项目20余项,获省科技进步三等奖两项,市科技进步一等奖一项,参编教材2部。
引用本文:    
薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
XUE Zongwei, LI Xinwei, LUAN Xu, LUO Xudong, XU Ruomeng, WU Feng. Effects of Nano-zirconia on Thermal Shock Resistance of Magnesia Ceramic. Materials Reports, 2019, 33(10): 1630-1633.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17090144  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1630
1 Zhi S H, Cao L H, Wang C, et al. Journal of Synthetic Crystals, 2010, 39(2), 455 (in Chinese).
智顺华, 曹林洪, 王超, 等. 人工晶体学报, 2010, 39(2), 455.
2 Li Y K, Zhou Z J.Ceramic and composites of ceramic materials, Beijing Institute of Technology Press, China, 2007 (in Chinese).
李云凯, 周张健. 陶瓷及其复合材料, 北京理工大学出版社, 2007.
3 Zhou Y. Ceramic materials, Harbin Institute of Technology Press, China, 1995 (in Chinese).
周玉. 陶瓷材料学, 哈尔滨工业大学出版社, 1995.
4 Li K, Wang D L, Chen H, et al. Journal of Advanced Ceramics, 2014, 3(3), 250.
5 Mao X S, Gu H Z, Wang H Z. Rare Metal Materials and Engineering, 2007, 36(s2), 358 (in Chinese).
毛雪松, 顾华志, 汪厚植. 稀有金属材料与工程, 2007, 36(s2), 358.
6 Huang X H, Yin B K, Zhang L L, et al. Journal of Ceramics, 2010, 31(2), 229 (in Chinese).
黄学辉, 尹炳坤, 张丽丽, 等. 陶瓷学报, 2010, 31(2), 229.
7 Zhang C, Huang D X, Xu B, et al. Rare Metal Materials and Enginee-ring, 2009, 38(s2), 1232 (in Chinese).
张骋, 黄德信, 徐兵, 等. 稀有金属材料与工程, 2009, 38(s2), 1232.
8 Yu M, Luo X D, Zhang G D, et al. Journal of Synthetic Crystals, 2016, 45(9), 2251 (in Chinese).
于忞, 罗旭东, 张国栋, 等. 人工晶体学报, 2016, 45(9), 2251.
9 Song X L, Huang X H. Fundamentals of inorganic materials science, Chemical Industry Press, China, 2006 (in Chinese).
宋晓岚, 黄学辉. 无机材料科学基础,化学工业出版社, 2006.
10 Ning Q J, Tan G Q, Shi Y S. Physical properties of inorganic materials, Chemical Industry Press, China, 2014 (in Chinese).
宁青菊, 谈国强, 史永胜. 无机材料物理性能,化学工业出版社, 2014.
11 Zhao J, Ai X, Deng J X, et al. Materials Science and Engineering A, 2004, 382(1-2), 23.
12 Li S, Xie Z P. Journal of Inorganic Materials, 2016, 31(2), 207 (in Chinese).
李双, 谢志鹏. 无机材料学报, 2016, 31(2), 207.
13 Zhou H M, Zeng G Z, Liu J W, et al. Materials Review B:Research Papers, 2016, 30(6), 14 (in Chinese).
周后明, 曾国章, 刘景文, 等. 材料导报:研究篇, 2016, 30(6), 14.
14 Lu L X, Di L Z, Ding C H, et al. Transaction of the Indian Ceramic So-ciety, 2015, 74(3), 162.
15 Sarkar D, Adak S, Chu M C, et al. Ceramics International, 2007, 33(2), 255.
16 Sui W M, Huang Y. Materials Review, 2000, 14(2), 34 (in Chinese).
隋万美, 黄勇. 材料导报, 2000, 14(2), 34.
17 Chu A M, Wang Z Q, Zhang D Z, et al. Materials Review, 2017, 31(S1), 363 (in Chinese).
储爱民, 王志谦, 张德智, 等. 材料导报, 2017, 31(专辑29), 363.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[8] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[9] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[10] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[11] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[12] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[13] 刘婷, 陈伟东, 鞠红民, 闫淑芳, 张宇欣, 马文. 聚丙烯酰胺凝胶法制备氧化锆纳米粉体的热分解过程和相转变行为[J]. 材料导报, 2019, 33(14): 2315-2318.
[14] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[15] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed