Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1163-1168    https://doi.org/10.11896/cldb.18010283
  无机非金属及其复合材料 |
钙钛矿铁电体在超高压下的铁电重现
肖长江
河南工业大学材料科学与工程学院,郑州 450001
Ferroelectricity Reentrance of Perovskite Ferroelectric Under Ultra-high Pressure: an Overview
XIAO Changjiang
Department of material Science and Engineering, Henan University of Technology, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 10871KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁电材料的晶体在一定的温度范围内具有自发极化,而且其自发极化方向可以因外电场方向的反向而反向,它具有铁电性、热释电性、压电性、介电性及以光电效应、声光效应、光折变效应和非线性光学效应等特性,在铁电存储器、红外探测器、空间光调制器、介电热辐射测量器及光学传感器等方面有重要应用。铁电材料及其应用研究已成为凝聚态物理和固体电子学领域最热门的研究课题之一。
当前在压电、超导、磁电阻、催化、离子导体等多种功能材料中,具有钙钛矿结构的材料占重要比例,因此钙钛矿结构材料也是当前材料科学研究领域的热点之一。在铁电材料中,钙钛矿型铁电体材料是电子陶瓷中使用最广泛的材料。
与温度一样,压力也是决定物质存在状态和导致材料的结构与性能变化的基本热力学要素之一。在压力的作用下,材料内部原子之间的相互作用非常复杂,并且表现出与常压下迥异的性质,因此常压下的理论不一定能解释高压下的现象。多年来,研究者们一直致力于探索高压下物质的行为并揭示其中的物理现象和规律。超高压对铁电材料的结构和性能的影响也是人们一直研究的热点。在超高压下对铁电材料进行X射线衍射、拉曼光谱、中子散射分析及第一性原理理论计算,结果表明,压力能使铁电材料的对称性升高,空间群自由度减少,结构变得更规则,从而引发自发极化减少,导致铁电性能降低,铁电材料的晶体结构由铁电相逐渐转变为顺电相,铁电材料最终变为顺电材料。
近年来,对铁电材料在更高压力下的研究发现,在超高压下铁电材料出现一个有趣的现象。随着压力的增加,一些铁电材料的铁电性逐渐降低,但超过某个临界值后,铁电性能有很大的提高,铁电性重新出现。本文综述了钙钛矿铁电体BaTiO3、PbTiO3、KNbO3、复合铁电体BiFeO3-PbTiO3、弛豫铁电体Pb(Zn1/3Nb2/3)O3和Pb(mg1/3Nb2/3)O3、BaTiO3/PbTiO3超晶格在超高压下晶体结构随压力的变化和铁电重现现象,使研究者们对铁电材料的结构和性能随压力的变化有全面的理解,以期为铁电材料的铁电机理研究提供参考,为未来新的钙钛矿铁电体的研究和制备提供理论依据和新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖长江
关键词:  钙钛矿铁电体  超高压  相变  铁电重现  复合铁电体  弛豫铁电体    
Abstract: Ferroelectric materialis defined as a kind of material whose crystal show spontaneous polarization in a certain temperature range and its spontaneous polarization direction can be reversed by the direction reverse of an external electric field. Ferroelectric material features ferroelectric, pyroelectric, piezoelectric, dielectric, photoelectric, acoustooptic, photorefractive and nonlinear optical effects, which enable its important applications in ferroelectric memory, infrared detector, spatial light modulator, dielectric thermal radiation measuring device, optical sensor and so forth. Accordingly, Ferroelectric materials and their applications have become one of the popular research topics in condensed matter physics and solid-state electronics.
It is universally known that perovskite structure materials account for a considerable proportion among piezoelectric, superconductivity, magnetoresistance, catalysis, ionic conductor and other functional materials. As a result, perovskite structure materials have aroused great research interests in the field of materials science. Concerning the ferroelectric materials, perovskite ferroelectric materials are also the most widely used in electronic ceramics.
Similar to temperature, pressure is also one of the basic thermodynamic factors that determine the existence of a material and change the structure and properties of the material. When pressure is added to the materials, complex interaction between atoms in the material occurs, which presents quite different properties from the one under atmospheric pressure. In this case, the relative theory of materials obtained at atmospheric pressure may not be able to explain the phenomenon of materials under high pressure. People have long been trying to explore the behavior of matters under high pressure and reveal the physical phenomena and laws. Also, the effect of ultra-high pressure on the structure and properties of ferroelectric materials has always been the focus of research. The study of ferroelectric materials under high pressure by means of X-ray diffraction, Raman spectrum, neutron scattering and first-principle theoretical calculation show that pressure contribute to increase the symmetry of ferroelectric materials, reduce the degrees of freedom of space group, make the crystal structure become more regular, and decrease spontaneous polarization, resulting in the reduction of ferroelectric properties. In addition, the crystal structure of ferroelectric material transforms from ferroelectric phase to paraelectric one, and the ferroelectric material finally turns to paraelectric one.
In recent years, a novel phenomenon appears in ferroelectric materials under ultra-high pressure has been found during the research on ferroelectric materials under a much higher pressure. To be specific, the ferroelectric properties gradually decrease with the increasing pressure, yet there will be a sharp rise in ferroelectric properties of ferroelectric materials when the pressure exceeds a certain critical value, and ferroelectric properties have reappeared. In this paper, the changes of the crystal structure and ferroelectricity reentrance of perovskite-type ferroelectrics (such as BaTiO3, PbTiO3, KNbO3), composite ferroelectrics (BiFeO3-PbTiO3), relaxor ferroelectrics (Pb(Zn1/3Nb2/3)O3) and Pb(mg1/3-Nb2/3)O3, BaTiO3/PbTiO3 superlattices, under ultra-high pressure are reviewed. It is expected to provide a reference for the study on ferroelectric mechanism of ferroelectric materials, and offer a comprehensive understanding of the changes in the structure and properties of ferroelectric materials as a function of pressure. The theoretical basis and new approaches will be provided for the preparation and research of new perovskite-type ferroelectrics in the future.
Key words:  perovskite-type ferroelectric materials    ultra-high pressure    phase transition    reentrance of ferroelectricity    composite ferroelectrics    relaxor ferroelectrics
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  O452  
基金资助: 郑州市科技局自然科学项目(20150246)
通讯作者:  cjxiao@haut.edu.cn   
作者简介:  肖长江,河南工业大学材料学院副教授、硕士研究生导师。1994年7月本科毕业于郑州大学材料学院,2007年3月在中国科学院物理研究所凝聚态物理专业取得博士学位,主要从事功能材料和高压合成新材料研究。近年来,在功能材料和超硬材料领域发表论文30余篇,包括materials Chemistry and Physics、Physica Status Solidis A、Journal of Physics and Che-mistry of Solids、International Journal of Thermophysics、International Journal of materials Research和Journal of materials Processing Technology等。
引用本文:    
肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
XIAO Changjiang. Ferroelectricity Reentrance of Perovskite Ferroelectric Under Ultra-high Pressure: an Overview. Materials Reports, 2019, 33(7): 1163-1168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010283  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1163
1 Zhong W L. Ferroelectric physics,Science Press, 2018(in Chinese).
钟维烈. 铁电体物理学,科学出版社,2018.
2 Ai S T, Wang C L, Zhong W L. Acta Physica Sinica, 2001, 50(5), 910 (in Chinese).
艾树涛, 王春雷, 钟维烈.物理学报, 2001, 50(5), 910.
3 Ye H J,Wang D W,Jiang Z J.Acta Physica Sinica 2016, 65 (23), 237101 (in Chinese).
叶红军,王大威,姜志军. 物理学报, 2016, 65(23), 237101.
4 Zhong W L, Wang Y X. Piezoelectrics & Acoustooptics, 2003, 25(1),46 (in Chinese).
钟维烈, 王渊旭.压电与声光,2003, 25(1),46.
5 Zhao Z, Buscaglia V, Viviani m, et al. Physical Review B, 2004, 70, 024107.
6 Deng X Y, Wang X H, Wen H, et al. Journal of the American Ceramic Society, 2006, 15, 45.
7 Deng X Y, Wang X H, Wen H, et al. Applied Physics Letters, 2006, 88,252905.
8 Wang X H, Deng X Y, Wen H, et al. Applied Physics Letters, 2006, 89,162902.
9 Lin S, Lü T Q, Jin C Q, et al. Physical Review B, 2006, 74,134115
10 Hou Z W, Kang A G, ma WQ,et al. Chinese Physics B, 2014, 23(11),117701.
11 Zhong W L,, AL S T, Jiang B. Journal of Inorganic materials, 2002, 17(5), 1009 (in Chinese).
钟维烈, 艾树涛, 姜斌. 无机材料学报, 2002, 17(5), 1009.
12 Zhang H T, Kang A G, Yang B G, et al. Journal of Synthetic Crystals, 2013, 42(9), 1848 (in Chinese).
张海涛,康爱国,杨北革,等.人工晶体学报,2013, 42(9), 1848.
13 Zhang S, Chen L, Li H Y. Piezoelectrics & Acoustoo Ptics, 2014, 36(1), 107 (in Chinese).
张帅,陈雷,李海洋. 压电与声光,2014, 36(1), 107.
14 Liu Y G, Kang A G, Zhang S F, et al.Acta Physica Sinica, 2015, 64(17), 177702 (in Chinese).
刘永广, 康爱国, 张少飞, 等.物理学报, 2015, 64(17), 177702.
15 Samara G A, Sakudo T, Yoshitsu K. Physical Review Letters, 1975, 35, 1767.
16 Gourdain D, Besson J m, et al. Physical Review B, 2002, 65, 054104.
17 Pruzan Ph, Gourdain D, Chervin J C. Solid State Communications, 2002, 123, 21.
18 Ishidate T, Abe S, Takahashi H. Physical Review Letters, 1997, 78(12), 2397.
19 Sani A, Levy D. Journal of Physics: Condensed matter, 2002, 14,10601.
20 Kornev I A, Bellaiche L, Bouvier P. Physical Review Letters, 2005, 95, 196804.
21 Bousquet E, Ghosez P. Physical Review B, 2006, 74, 180101(R).
22 Seo Y S, Ahn J S.Physical Review B, 2013, 88, 014114.
23 Kornev I A, Bellaiche L. Phase Transitions, 2007, 80, 385.
24 Janolin P E, Bouvier P, Kreisel J, et al. Physical Review Letters, 2008, 101(23), 237601.
25 Kobayashi Y, Endo S, Ashida T. Physical Review B, 2000, 61, 5819.
26 Li S, Rajeev A,B¨orje J. Journal of Physics: Condensed matter, 2002, 14, 10873.
27 Basu A, Jana R, Ranja R. Physical Review B, 2016, 93, 214114.
28 Duan Y F, Tang G. Physical Review B, 2012, 85, 054108.
29 Janolin P E, Dkhil B, Bouvier P. Physical Review B, 2006, 73(9),094128.
30 Kreisel J, Dkhil B, Bouvier P. Physical Review B, 2002, 65, 172101.
31 Chaabane B, Kreisel J, Dkhil B. Physical Review Letters, 2003, 90,257601.
32 Ahart m, Somayazulu m, Ye Z G. Physical Review B, 2009, 79,132103.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[5] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[6] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[7] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[8] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[9] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[10] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[11] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[12] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[13] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[14] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[15] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed