Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1169-1173    https://doi.org/10.11896/cldb.18010267
  金属与金属基复合材料 |
合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状
孙娅1, 吴长军1, 刘亚1, 彭浩平1, 苏旭平1,2
1 常州大学江苏省材料表面科学与技术重点实验室,常州 213164
2 常州大学江苏省光伏科学与工程协同创新中心,常州 213164
Impact of Alloying Elements on the Phase Composition and mechanical Properties of the CoCrFeNi-based High Entropy Alloys: a Review
SUN Ya1, WU Changjun1, LIU Ya1, PENG Haoping1, SU Xuping1,2
1 Jiangsu Key Laboratory of materials Surface Science and Technology, Changzhou University, Changzhou 213164
2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164
下载:  全 文 ( PDF ) ( 3058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于多主元设计理念的高熵合金(又称多主元合金)虽然组成元素复杂,但能形成简单结构的固溶体,并具有优异的性能,已成为当前高性能金属材料的研究热点之一。目前的研究主要集中在固溶体形成条件、成分种类、含量、组织结构及不同退火温度对合金的组织和力学性能的影响等方面。学者们还界定了形成固溶体时合金混合焓、原子半径及价电子浓度(VEC)的范围。
当前的研究以CoCrFeNi基合金最为广泛,主要研究目标包括提高BCC型合金的塑性或FCC型合金的强度,以及开发具有良好的可铸性、易适应大规模生产的共晶高熵合金。通过降低晶粒尺寸、热处理和引入新元素等方法,使高熵合金产生晶界强化以及析出细小、弥散的第二相,从而有效地强化FCC基体。通过一系列的合金设计,研究出一些低成本、高性能的合金,进而也可用于一些高性能要求的零件或制备成高性能涂层。
本文综述了合金元素Al、Cu、Ti、mn、mo、Pd、Nb及两种元素协同作用对铸态CoCrFeNi基高熵合金的相组成和力学性能的影响。通过对比发现,不同元素由于其原子半径、电负性以及与其他元素的结合力不同对高熵合金的相形成产生不同的影响,从而影响其力学性能。Al、Ti和mo等原子半径较大元素的添加会产生固溶强化,使得合金的硬度增大。同时,Al元素的添加会因形成有序的B2相而产生第二相强化;部分合金还能形成共晶高熵合金。Ti和mo元素由于与其他元素的混合焓较小容易形成复杂的化合物使得合金变脆。而Cu与其他元素混合焓较大,易优先在枝晶间析出。铸态下mn含量的变化不影响合金的晶体结构,合金为FCC相。经过时效处理后,mn含量高的合金有少量σ相析出。添加Nb元素后,合金由于Laves相的出现强度增加且变脆。此外,还对添加Pb元素后合金的饱和磁化性能以及部分合金的耐腐蚀性等进行了综述。本文可为高熵合金的成分设计及研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙娅
吴长军
刘亚
彭浩平
苏旭平
关键词:  高熵合金  CoCrFeNi基  合金元素  时效处理  力学性能    
Abstract: High entropy alloys (HEAs), also called multi-component alloys, are newlydesigned alloys based on multi-component concept. Although, the composition elements of HEAs are complex, they are able to form solid solutions with simple structure, and exhibit excellent performance. Accordingly, HEAs have become one of the research highlights in the field of high performance metal materials. Current researches mainly focus on the impact of the forming conditions of the solid solution, types, amounts and microstructure of components, and the annealing temperature on the microstructure and mechanical properties of HEAs. Furthermore, the range of enthalpy, atomic radius and valence electron concentration (VEC) of the high entropy alloy in the formation of solid solution have been also defined.
Among numerous HEAs, CoCrFeNi-based alloys have received most extensive studies, which mainly aim to improve the plasticity of BCC-type alloys or strengthen the FCC-type alloys, as well as develop the eutectic high entropy alloys with favorable casting property and adaptive for mass production. Specifically, by means of reducing the grain size, heat treatment or introducing new elements, the grain boundary strengthening and precipitation of fine and dispersed second phases can be realized, thus the FCC matrix will be strengthened effectively. Besides, some alloys with low cost and high performance can be developed through alloy designing, which can be used in some parts required high performance or in preparation of high performance coatings.
In the present work, the effects of Al, Cu, Ti, mn, mo, Pd, Nb elements and the synergism of two elements on the phase formation and mechanical properties of the as-cast CoCrFeNi-based high entropy alloys are reviewed.It has been found from comparison that various elements have different impact on the phase formation of high entropy alloys, due to their diverse atomic radius, electronegativity and the binding force with other elements, and then the mechanical properties of high entropy alloys will be affected. The addition of Al, Ti, mo and other elements with larger atomic radius will bring about solid solution strengthening and thus increase the hardness of the alloy. meanwhile, the addition of Al element will result in the second phase strengthening owing to the formation of the ordered B2 phase, and some of the alloys may form the eutectic high entropy alloys as well. Ti and mo are prone to form complex compounds because of their more negative mixing enthalpy with other elements, which makes the alloy become brittle. While the mixing enthalpy of Cu with other elements are more positive, leading to the interdendritic precipitation of Cu-rich phase in preferential. The change of mn content in as-cast state does not affect the crystal structure of the alloy, presenting FCC-type phases. After aging treatment, a small number of σ phase precipitate in the alloy with high mn content. With the addition of Nb, there is a increase in strength of the alloy accompanied by the alloy embrittlement, because of the appearance of the Laves phase. In addition, the saturated magnetization after the addition of Pb and the corrosion resistance of some other alloys are also reviewed. This review is expected to provide useful information for the composition designing and research of high entropy alloys.
Key words:  high entropy alloys    CoCrFeNi-based    alloy elements    aging treatment    mechanical properties
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51771035;51471037);江苏省自然科学基金(BK20161190);常州大学材料科学与工程学院研究生科研与实践创新计划项目(CL17SJ-003)
通讯作者:  wucj@cczu.edu.cn   
作者简介:  孙娅,常州大学材料科学与工程学院硕士研究生。在吴长军副教授指导下进行研究。目前主要研究领域为高性能金属材料。吴长军,常州大学材料科学与工程学院副教授,硕士生导师。2011年6月毕业于湘潭大学,获工学博士学位;2015-2016年在韩国浦项科技大学进行博士后研究工作。主要从事高性能金属材料、合金相图及材料设计、材料表面处理等方面的研究。近年来,先后发表SCI/EI收录40余篇。曾获教育部科技进步二等奖。
引用本文:    
孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
SUN Ya, WU Changjun, LIU Ya, PENG Haoping, SU Xuping. Impact of Alloying Elements on the Phase Composition and mechanical Properties of the CoCrFeNi-based High Entropy Alloys: a Review. Materials Reports, 2019, 33(7): 1169-1173.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010267  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1169
1 Cantor B, Audebert F, Galano m, et al. Journal of metastable & Nanocrystalline materials, 2005, 24-25, 1.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering materials, 2004, 6(5), 299.
3 Zhang Y, Zuo T T, Tang Z, et al. Progress in materials Science, 2014, 61(8), 1.
4 middleburgh S C, King D m, Lumpkin G R, et al. Journal of Alloys & Compounds, 2014, 599(7), 179.
5 miracle D B, Senkov O N. Acta materialia, 2016, 122(448), 511.
6 Butler T m, Alfano J P, martens R L, et al. JOm, 2015, 67(1), 246.
7 Zhou Y J, Zhang Y, Wang Y L, et al. Applied Physics Letters, 2007, 90(18), 253.
8 Dahlborg U, Cornide J, Calvo-Dahlborg m, et al. Journal of Alloys & Compounds, 2016, 681, 330.
9 Fu Z, Chen W, Xiao H, et al. materials & Design, 2013, 44(535), 9.
10 Xu X D, Liu P, Tang Z, et al. Acta materialia, 2017, 144, 107.
11 Zhu J m, Zhang H F, Fu H m, et al. Journal of Alloys and Compounds, 2010, 497(1-2), 52.
12 Tsai m H, Tsai K Y, Tsai C W, et al. materials Research Letters, 2013, 1(4), 207.
13 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 213.
14 Zhu J m, meng J L, Liang J L. Rare metals, 2016, 35(5), 385.
15 Jiang H, Jiang L, Qiao D, et al. Journal of materials Science & Technology, 2016, 33(7), 712.
16 ma S G, Zhang Y. materials Science & Engineering A, 2012, 532(1), 480.
17 Zhu J m, Fu H m, Zhang H F, et al. materials Science & Engineering A, 2010, 527(27), 7210.
18 Zhu J m, Fu H m, Zhang H F, et al. Journal of Alloys & Compounds, 2011, 509(8), 3476.
19 Wang X F, Zhang Y, Qiao Y, et al. Intermetallics, 2007, 15(3), 357.
20 Li B S, Wang Y P, Ren m X, et al. materials Science & Engineering A, 2008, 498(1-2), 482.
21 Tung C C, Yeh J W, Shun T T, et al. materials Letters, 2007, 61(1), 1.
22 Zhang K B, Fu Z Y, Zhang J Y, materials Science and Engineering A, 2009, 508(1), 214.
23 He J Y, Liu W H, Wang H, et al. Acta materialia, 2014, 62(1), 105.
24 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Journal of Alloys & Compounds, 2015, 628(628), 170.
25 Ganji R S, Karthik P S, Rao K B S, et al. Acta materialia, 2017, 125, 58.
26 Li C, Zhao m, Li J C, et al. Journal of Applied Physics, 2008, 104(11), 89.
27 Rao J C, Diao H Y, Ocelík V, et al. Acta materialia, 2017, 131, 206.
28 Wang W R, Wang W L, Wang S C, et al. Intermetallics, 2012, 26, 44.
29 Kao Y F, Chen T J, Chen S K, et al. Journal of Alloys & Compounds, 2009, 488(1), 57.
30 Zeng J, Wu C, Peng H, et al. Vacuum, 2018, 152, 214.
31 Santodonato L J, Zhang Y, Feygenson m, et al. Nature Communications, 2015, 6, 5964.
32 Chou H P, Chang Y S, Chen S K, et al. materials Science & Engineering B, 2009, 163(3), 184.
33 Lin C m, Tsai H L. Intermetallics, 2011, 19(3), 288.
34 Zhang Y, Wang X, Li J, et al. materials Science & Engineering A, 2018, 724, 148.
35 Lu Y, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
36 Lu Y, Gao X, Jiang L, et al. Acta materialia, 2017, 124, 143.
37 Zhou Q, Li S, Huang P, et al. Applied materials, 2016, 4(9), 102.
38 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering materials, 2010, 10(6), 534.
39 Yeh J W, Lin S J, Chin T S, et al. metallurgical and materials Transactions A, 2004, 35(8), 2533.
40 Hsu Y J, Chiang W C, Wu J K. materials Chemistry & Physics, 2005, 92(1), 112.
41 Wu J m, Lin S J, Yeh J W, et al. Wear, 2006, 261(5), 513.
42 Otto F, Yang Y, Bei H, et al. Acta materialia, 2013, 61(7), 2628.
43 Yao m J, Pradeep K G, Tasan C C, et al. Scripta materialia, 2014, 72-73(1), 5.
44 Gludovatz B, Hohenwarter A, Catoor D, et al. Ritchie RO. Science, 2014, 345(6201), 1153.
45 Zaddach A J, Scattergood R O, Koch C C. materials Science & Engineering A, 2015, 636(373), 8.
46 Cantor B, Chang I T H, Knight P, et al. materials Science & Engineering A, 2004, s375-377(1), 213.
47 Shun T T, Hung C H, Lee C F. Journal of Alloys & Compounds, 2010, 493(1), 105.
48 Jiang L, Lu Y, Dong Y, et al. Intermetallics, 2014, 44(1), 37.
49 Lucas m S, mauger L, mu OZ J A, et al. Journal of Applied Physics, 2011, 109(7), 299.
50 Cornide J, Calvo-Dahlborg m, Chambreland S, et al. Acta Physica Polonica, 2015, 128(4), 557.
51 Liu W H, He J Y, Huang H L, et al. Intermetallics, 2015, 60, 1.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[12] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[13] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed