Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1174-1181    https://doi.org/10.11896/cldb.17120157
  金属与金属基复合材料 |
高熵合金相形成理论研究进展
赵雪柔, 吕煜坤, 石拓
西安工业大学材料与化工学院,西安 710021
Advances in the Study of Phase Formation Theory of High Entropy Alloys
ZHAO Xuerou, LYU Yukun, SHI Tuo
School of materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021
下载:  全 文 ( PDF ) ( 10821KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相对于传统的二元合金,多主元高熵合金(HEAs)通常由五种及以上元素组成,呈现出结构晶格畸变、原子缓慢扩散及组织高稳定性等特征。高熵合金作为材料研究领域的一种新型合金,极易获得热稳定性很高的固溶相和纳米结构,甚至可得到非晶相,其综合性能明显优于传统合金,因此,高熵合金具有很高的学术研究价值和工业应用潜力。
材料的成分和组织决定了材料最终的性能,多主元成分设计使得高熵合金相组成较为复杂,如何通过理论计算相形成规律,从而准确地预测出给定成分高熵合金的相组成,对高熵合金材料设计至关重要。研究发现混合焓Hmix可对高熵合金中的相组成进行确定,但简单的混合焓参数已经不能满足多主元高熵合金相预测的准确性,更多参数在高熵合金发展进程中被提出。
研究发现,原子半径差δr及熵/焓Ω(TA)等参数可预测出高熵合金中的固溶体(SS)相和金属间化合物(Im)相,却无法预测固溶体的具体类型。然而,KCr1(TA)参数的补充提高了给定热处理温度下相预测的准确性,且热处理后SS相形成域的参数值变小,这表明Im相在热处理后形成了另一种相且影响了参数值;价电子浓度VEC判据可预测FCC、BCC型高熵合金的固溶体类型,但不适用于所有的高熵合金;电负性差ΔX可对大部分高熵合金(除含大量Al之外)的拓扑闭合相稳定性进行预测,且ΔX>0.133时可预测出高熵合金中有拓朴闭合稳定相存在。为了更全面准确地预测高熵合金相组成,有学者提出了较为完善的CALPHAD计算机热力学相图预测模型,由于FCC比BCC结构的动力学效应大,采用CALPHAD方法预测FCC相组成精确性较差,但对BCC相的预测十分精确。而分子轨道理论仅用一个参数md(合金化过渡金属d轨道的平均能级),就可以预测以镍基、钴基和铁基合金为基础高熵合金中固溶体与过渡金属所形成的TCP/GCP相。
本文在传统合金相形成规律的基础上,通过对现有高熵合金相形成理论进行研究,阐明了高熵合金的相结构模型;总结出固溶体与金属间化合物,面心立方FCC、体心立方BCC和密排六方HCP结构的高熵合金,以及固溶体与第二相形成规律的理论预测模型;分析所有理论预测模型的优缺点,最终总结出一套较为完整的高熵合金相组成的预测流程,有利于初学者进行高熵合金的成分设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵雪柔
吕煜坤
石拓
关键词:  高熵合金  固溶体  成分  模型  相形成    
Abstract: Different from the conventional binary alloys, multi-principal high entropy alloys (HEAs) are usually composed of five or more elements, exhibiting the characteristics of lattice structural distortion, slow diffusion of atoms and high structural stability. As a novel alloy, HEAs is prone to obtain solid-solution phase and nanostructure with high thermal stability, and even amorphous phase. HEAs show superior comprehensive properties to the conventional alloy, which holds significant academic research value and considerable industrial application potential.
The composition and microstructures of the material determine its final properties. The design of multi-principal component makes phase composition of HEAs more complicated. Accordingly, it is of great importance for the design of HEAs to predict the phase formation rules of the given HEAs accurately through theoretical calculations. It has been found that mixed enthalpy Hmix can determine the phase composition in HEAs. Nevertheless, the multi-principal high-entropy alloy phase can not be predicted precisely via simple mixing enthalpy parameters, and more parameters are proposed in the development process of high-entropy alloys.
Previous studies have proved that solid solution (SS) phase and intermetallic compound (Im) phase in HEAs can be predicted by atomic radius difference δr, ratio of entropy and enthalpy parameter Ω(TA), yet they fail to predict the type of solid solution. However, the supplement of parameters KCr1(TA) raises the accuracy of phase prediction at a given heat treatment temperature. The value of the SS phase formation domain turns smaller after heat treatment, indicating the formation of another phase after heat treatment the Im phase. The VEC criterion can predict solid solution phase type of FCC and BCC HEAs, but it is not applicable for all high-entropy alloys. The difference of electronegativity ΔX can predict stability of topological closed phase of most HEAs (except for the one containing a large amount of Al), and topological closed phase would be stable when ΔX>0.133. For the sake of predicting the phase formation rules of HEAs more accurately, the prediction models of CALPHAD (computer coupling of phase diagrams and thermochemistry) is proposed by scholars. Since the kinetic effect of FCC is larger than BCC structure, it is worse to employ CALPHAD to predict the phase composition of FCC, while the prediction of BCC phase by CALPHAD is quite precise. Howe-ver, using only one parameter md (the average energy level of d orbital of alloyed transition metal), the molecular orbital theory is capable of predicting TCP/GCP phase formed by the solid-solution and transition metal in nickel-based, cobalt-based and iron-based HEAs.
Based on the phase formation law of conventional alloys, the phase structure model of high entropy alloys is clarified by studying the current theory of phase formation of high entropy alloys. The theoretical prediction model of the solid solution and intermetallic compound, Face-centered cube (FCC), Body-centered cube (BCC) and Close-packed hexagonal(HCP) structured HEAs, solid solution and the second phase are summarized. The pros and cons of all phases formation theoretical prediction models are analyzed, and a more complete set of HEA prediction flow is proposed, which is benefit to the beginners to design the composition of HEAs.
Key words:  high entropy alloys    solid solution    composition    model    phase formation
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG146  
基金资助: 陕西省自然科学基础研究计划(2017Jm5057);陕西省教育厅专项科研计划(17JK0372);陕西省教育厅重点实验室基金(17JS054)
通讯作者:  lyk-222@163.com   
作者简介:  赵雪柔,2017年6月毕业于西安工业大学,获得工学学士学位。现为西安工业大学材料与化工学院硕士研究生,在陈建教授和吕煜坤老师的指导下进行研究。目前主要研究领域为新型 TWIP/TRIP高熵合金。吕煜坤,西安工业大学材料与化工学院讲师。2008年7月本科毕业于冶金与能源学院,2013年7月在重庆大学材料科学与工程学院取得博士学位。主要从事高熵合金,抗震钢及疲劳性能,以及新型铝镁合金的研究工作。近年来,在新材料科学领域发表论10余篇,包括Advanced materials Research、materials & Design、Construction and Building materials等。
引用本文:    
赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
ZHAO Xuerou, LYU Yukun, SHI Tuo. Advances in the Study of Phase Formation Theory of High Entropy Alloys. Materials Reports, 2019, 33(7): 1174-1181.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120157  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1174
1 Zhu Z X. Engineering materials,Tsinghua University Press,China,2000 (in Chinese).
朱张校.工程材料,清华大学出版社,2000.
2 Davis J R. metals hand book,China machine Press,China,2011(in Chinese).
Davis J R. 金属手册,机械工业出版社,2011.
3 Guo H,Eckert J,et al. Nature materials,2003,2(1),33.
4 Li A m,Zhang X Y. materials Review, 2007,21(11),56(in Chinese).
李安敏,张喜燕. 材料导报,2007,21(11),56.
5 Zhang Y,Zhou Y J. materials Science Forum,2007,561-565,1337.
6 Xu Z Y,Li L. materials thermodynamics,Science Press,China,2000 (in Chinese).
徐祖耀,李麟. 材料热力学,科学出版社,2000.
7 Greer A L. Nature, 1993,366,303 .
8 Hume-Rothery W,Smallman R W,Haworth C W. The structure of metals and alloys, the metals and metallurgy Trust, London, 1969.
9 Zhang Y.Amorphous and high entropy alloys, Science Press,China,2010(in Chinese).
张勇.非晶和高熵合金, 科学出版社,2010.
10 Lin S,Hui L,Xue X,et al. Advanced materials Research,2013,634,1263.
11 Zhang Y,Chen m B,Yang X,et al. Advanced technology of high-entropy alloys,Chemical Industry Press,China,2017(in Chinese).
张勇,陈明彪,杨潇,等. 先进高熵合金技术,化学工业出版社,2017.
12 Zhao Y J,Qiao J W,ma S G,et al. materials and Design,2016,96,10.
13 Zhang Y,Zuo T T,Tang Z,et al.Progress in materials Science,2014,61,1.
14 Ng C,Guo S,Luan J,et al.Intermetallics,2012,31,165.
15 Feuerbacher m,Heidelmann m,Thomas C. Journal of materials Research,2014,3,1.
16 Takeuchi A,Amiya K,Wada T,et al.Journal of mechanics,2014,66 (10),1984.
17 Choudhuri D,Alam T,Borkar T,et al. Scripta materialia. 2015,100,36.
18 Yeh J W,Lin S J,Chin T S,et al. metallurgical and materials Transactions A,2004,35(8),2533.
19 Huang P K,Yeh J W,Shun T T,et al. Advanced Engineering materials,2004,6 (1-2),74.
20 Zhang Y,Zhou Y J,Lin J P,et al. Advanced Engineering materials,2008,10 (6),534.
21 Lu Y P,Jiang H,Guo S,et al. Intermetallics,2017,91,124.
22 Akira T,Inoue A. materials Ttansactions,2005,46 (12),2817.
23 Wang Z,Guo S,Liu C T. Acta materialia,2019,166,677.
24 Yang X,Zhang Y. materials Chemistry and Physics,2012,132 (2-3),233.
25 Zhang Y,Zhou Y J,Lin J P,et al. Advanced Engineering materials,2008,10 (6),534.
26 Guo S,Hu Q,Ng C,et al. Intermetallics,2013,41,96.
27 Guo S. Journal of materials Science & Technology,2015,31 (10),1223.
28 Egami T. materials Science and Engineering, 1997,226-228,261.
29 miracle D B ,Sanders W S,Senkov O N. Philosophical magazine,2003,3 (20),2409.
30 Wang Z J,Qiu W F,Yang Y,et al. Intermetallics,2015,64,63.
31 Ding H Y,Yao K F. Non-Cryst Solids,2013,9,364.
32 Ding H Y,Shao Y,Gong P,et al. materials Letters, 2014,125,151.
33 Huo J T,Huo L S,men H,et al. Intermetallics,2015,58,31.
34 Lu Z P,Wang H,Chen m W. et al. Intermetallics,2015,66,67.
35 Troparevsky m C,morris J R,Daene m,et al. Journal of metals,2015,67 (10),2350.
36 Senkov O N,miracle D B. Journal of Alloys and Compounds, 2016,658,603.
37 Guo S,Ng C,Lu J,et al. Journal of Applied Physics,2011,109,103505
38 Wang Z,Huang Y,Wang J. Philosophical magazine Letters,2015,95,1.
39 miracle D B,miller J D,Senkov O N,et al. Entropy,2014,16 (1),494.
40 Yeh J W. Annales de Chimie-science des materiaux,2006,31(6),633.
41 mansoori G A,Carnahan N F,Starling K E. Physical Chemistry Chemical Physics,971,54,1523.
42 Raghavan R,Hari Kumar K C,murty B S. Journal of Alloys and Compounds,2012,544,152.
43 Otto F,Yang Y,Bei H,et al. Acta materialia,2013,61(7),2628.
44 Kaufman L,Bernstein H. Computer calculation of phase diagrams,Academic Press,New York,1970.
45 Zhong Y,Wolverton C,Chang Y A,et al. Acta materialia,2004,52 (9),2739.
46 Zhang F,Liu S H,Wang J C,et al. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry,2017,57,28.
47 Chang K,Hallstedt B.CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry,2011,35,160.
48 Dong Y,LuY P,Li J,et al. Intermetallics,2014,52,105.
49 morinaga m ,Yukawa N,Ezaki H,et al. Philosophical magazine,1985,A 51,223.
50 matsumoto Y,morinaga m,Nambu T,et al. Journal of Physics-condensed matter,1996,8,3619.
51 morinaga m,Yukawa N ,Adachi H.Journal of Physics F: metal Physics,1985,15,1071.
52 Saad Sheikh,Uta Klement,Guo S. Journal of Applied Physics,2015,118(19),194902.
[1] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[5] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[6] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[7] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[8] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 吴光亮, 武尚文, 张永集, 孟征兵. 氮合金化HRB500E钢筋连铸传热过程模拟及配水工艺优化[J]. 材料导报, 2019, 33(5): 731-738.
[12] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[13] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[14] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[15] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed