Abstract: Stainless steel holds widespread application in daily life and industry, especially in petrochemical industry, owing to its high mechanical strength, generally good oxidation resistance at complex environment and excellent comprehensive properties. Unfortunately, stainless steel cannot ether escape from corrosion, one of the three tough problems causing the loss of materials, which seriously blocks the further application of stainless steel. Presently, there are primarily two approaches to prevent metal from corrosion, namely coating and changing the element and content of the materials (alloying). Certain progress has been achieved in study of coating protection, but there are still serious deficiencies. The secondary pollution caused by coating in the process of production and application deprives itself of the room for survival. Besides, the corrosion of materials in petrochemical industry is not only the direct erosion of chemical medium, but also the result of the combined action of high temperature, high pressure and continuous operation in practical production. Accordingly, the protective approach that mainly change the elements and contents of materials has become the research focus in this area, because it can not only overcome some malpractice of coating protection, but also effectively improve service life of petrochemical pipeline equipment. Alloying is one of the important approaches to improve the corrosion resistance of stainless steel. And it is the main stream of stainless steel alloying to fully explore the potential of microelements by controlling the types and contents of the introduced microelements. By controlled addition of microelements, the performance of the matrix will be enhanced due to the alteration of the precipitation process, distribution and structure of the original alloy elements; more importantly, grain refinement and strengthening will be achieved through the specific precipitated phase of the microelements in the alloying process. Consequently, it is the key to obtain specific precipitates and achieve performance improvement by reasonably controlling the type and amount of introduced elements. Up to now, the researches on improving corrosion resistance of stainless steel by doping alloying elements are mainly focused on doping single alloying elements or rare earth elements. Some related studies have demonstrated that the addition of trace Co, Nb, Ru, is also capable of optimizing the corrosion resistance of stainless steel. In addition, the combined additions of alloying elements not only preserve the specific advantages of a single element, but also boost the effect through the interaction between elements. meanwhile, numerous research results have demonstrated that the addition amount of alloying elements play a dominant role in improving the performance of the alloy, regardless of the single or compound doping. From the point of view of improving the corrosion resistance of stainless steel, we summarize research progress of the effects of alloying elements, rare earth elements, other microelements, as well as the existence of various alloying elements on the anti-corrosion performance of stainless steel. meanwhile, we point out the existing problems, the improvement measures and development trends in the research of corrosion beha-vior of stainless steel.
毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
BI Fengqin, ZHOU Bang, WANG Yong. Effect of Alloying on Anti-corrosion Performance of Stainless Steel: a Review. Materials Reports, 2019, 33(7): 1206-1214.
1 Zhen G H, Wang H R, Qu J E, et al.Journal of materials Protection, 2014, 47(6), 52 (in Chinese). 甄国辉, 王海人, 屈钧娥, 等. 材料保护, 2014, 47(6), 52. 2 Koch G H, Brongers m P H, Thompson N G, et al.Journal of Endocrinology, 2002, 122(1), 23. 3 Li X, Zhang D, Liu Z, et al.Nature, 2015, 527 (7579), 441. 4 Ishikawa T, Takeuchi K, Kandori K, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2005, 266 (1-3), 155. 5 Shen L Y, Shen Q F, Yang W.Corrosion & Protection, 1997, 14(5), 3 (in Chinese). 沈六一, 沈其昉, 杨武. 腐蚀与防护, 1997, 14(5), 3. 6 Tong X, Shahzad m B, Xu D, et al.materials Science & Engineering C,2017,71, 1079. 7 Xiang H L, Fan J C, Liu D, et al. Acta metallurgica Sinica, 2012, 48(9),1089 (in Chinese). 向红亮, 范金春, 刘东, 等. 金属学报, 2012, 48(9), 1089. 8 Li H W, Zhang T B, Zhang T Y. Acta metallurgica Sinica, 2008, 44(1), 39 (in Chinese). 李恒武, 张体宝, 张体勇. 金属学报, 2008, 44(1), 39. 9 Qin L Y, Song S Z, Li Y H, et al. Acta Physico-Chimica Sinica, 2008, 24(5), 895 (in Chinese). 秦丽雁, 宋诗哲, 李亚红, 等. 物理化学学报, 2008, 24(5), 895. 10 Was G S, Farkas D, Robertson I m.Current Opinion in Solid State and materials Science, 2012, 16(3), 134. 11 Wang Y X,Xiang H L,Yang C P, et al. Journal of Chinese Society for Corrosion and Protection, 2014, 34(6), 558 (in Chinese). 王永霞, 向红亮, 杨彩萍, 等.中国腐蚀与防护学报, 2014, 34(6), 558. 12 Liu T, Wang C, Shen H, et al.Corrosion Science, 2013, 76(2), 310. 13 Liu W, Zhou Q, Li L, et al.Journal of Alloys & Compounds, 2014, 598(12), 198. 14 Li R. Effect of Ti-concentration on the microstructure and hardness of 00Cr12Ni9mo4Cu maraging stainless steel. master's Thesis, ZheJiang University, China, 2008 (in Chinese). 李蓉. Ti含量对00Cr12Ni9mo4Cu马氏体时效不锈钢组织和硬度的影响. 硕士学位论文, 浙江大学, 2008. 15 Yao L.The effect and action mechanism of Al element on microstucture and properties of 17-7PH, 2205 stainless steel. master's Thesis, Lan Zhou University of Technology, China, 2013 (in Chinese). 姚亮. Al元素对17-7PH、2205不锈钢组织、性能的影响及作用机制. 硕士学位论文, 兰州理工大学, 2013. 16 Wang L P, Dong W X, Guo E J, et al.Hot Working Technology, 2013, 42(2), 63 (in Chinese). 王丽萍, 董文学, 郭二军, 等. 热加工工艺, 2013, 42(2), 63. 17 Toor I U H, Hyun P J, Kwon H S.Corrosion Science, 2007, 50(2), 404. 18 Wang J, Uggowitzer P J, magdowski R, et al.Scripta materialia, 1998, 40(1), 123. 19 Liang C H, Zhang J D. Corrosion Science and Protection Technology, 1995, 7(4), 336 (in Chinese). 梁成浩, 张继德. 腐蚀科学与防护技术, 1995, 7(4), 336. 20 Jing H m, Wu X Q. Acta metallurgica Sinica, 2002, 38(10), 1067 (in Chinese). 敬和民, 吴欣强. 金属学报, 2002, 38(10), 1067. 21 Li S J. Effect of composition on microstruture and properties of 00Cr25Ni7mo3N duplex stainless steel. master's Thesis, Kun ming University of Science and Technology, China,2011 (in Chinese). 李树健. 成分对00Cr25Ni7mo3N双相不锈钢组织及性能的影响. 硕士学位论文, 昆明理工大学, 2011. 22 Tian S C. Petro-Chemical Equipment,1994, 8(5), 43 (in Chinese). 田世昌. 石油化工设备技术, 1994, 8(5), 43. 23 Zhu Y. Effect of Ni, mn, N on microstructure and properties of 2507 super duplex stainsteel steel. master's Thesis, Harbin University of Science and Technology, China, 2014 (in Chinese). 朱岩. Ni、mn、N对2507超级双相不锈钢组织和性能的影响. 硕士学位论文, 哈尔滨理工大学, 2014. 24 Yang W, Yuan S B. Corrosion & Protection, 1992, 13(6), 286 (in Chinese). 杨武, 袁世彪. 腐蚀与防护, 1992, 13(6), 286. 25 Jiang Z H, Han J P, Li Y.material Research Innovations, 2014, 18(S5), S5-9. 26 Kim J K, Kim Y H, Uhm S H, et al.Corrosion Science, 2009, 51(6) 2716. 27 Ren P, Yang Y F, Zhu S L, et al. Corrosion Science, 2018, 18(9), 1573. 28 Li D G. Effect of vanadium and nickel on properities of 18Cr-2mo ferritic stainless steel. master's Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese). 李达岗. 钒和镍对18Cr-2mo铁素体不锈钢性能的影响. 硕士学位论文, 上海交通大学,2013. 29 Ras m H, Pistorius P C.Corrosion Science, 2002, 44(11), 2479. 30 Yang J, Zou D N, Li X m, et al.Journal of Iron and Steel Research (International), 2007, 14(1), 47. 31 Zhang H m. Effect of rare-earth Ce on the corrosion resistance and antibacterial property of 2Cr13 stainless steel. master's Thesis, Inner mongolia University of Science & Technology, China, 2011 (in Chinese). 张慧敏. 稀土元素Ce对2Cr13不锈钢耐蚀性与抗菌性的影响. 硕士学位论文, 内蒙古科技大学, 2011. 32 Liu X, Wang L m. Chinese Rare Earths, 2017(3), 1 (in Chinese). 刘晓, 王龙妹. 稀土, 2017(3), 1. 33 Wang Y, Zhang Z J, Zhang X Y, et al. The Chinese Journal of Nonferrous metals, 2015(7), 1858 (in Chinese). 王勇, 张正江, 张旭昀, 等. 中国有色金属学报, 2015(7), 1858. 34 Luo T J, Yang Y S, Li Y J, et al. Electrochimica Acta, 2009, 54(26), 6433. 35 Chen G A, Yang W Y, Sun Z Q, et al. Acta metallurgica Sinica, 2007, 43(8), 785 (in Chinese). 陈国安, 杨王玥, 孙祖庆, 等. 金属学报, 2007, 43(8), 785. 36 Zheng H, Lu S, Su Q, et al.International Journal of Refractory metals & Hard materials, 2008, 26(1), 1. 37 Zhao L P, Wang J F, ma Y L, et al. Iron and Steel, 2010, 45(4), 65 (in Chinese). 赵莉萍, 王锦飞, 麻永林, 等. 钢铁, 2010, 45(4), 65. 38 Zhang H m, Cui C Y, Zhao L P, et al.Journal of the Chinese Rare Earth Society, 2011, 29(1), 100 (in Chinese). 张慧敏, 崔朝宇, 赵莉萍, 等. 中国稀土学报, 2011, 29(1), 100. 39 Liu X, ma L F, Li Y G.Transantions of materials and Heat Treatment, 2016, 37(1), 112 (in Chinese). 刘晓, 马利飞, 李运刚.材料热处理学报, 2016, 37(1), 112. 40 Zhao L P, Yuan X, Li Z.Chinese Rare Earths, 2015, 36(3), 78 (in Chinese). 赵莉萍, 袁雪, 李钊.稀土, 2015, 36(3), 78. 41 Lin Q, Guo F, Zhu X Y.Journal of Rare Earths, 2007, 25(4), 485. 42 Zhao L P, Wu L F, Zhao Y T, et al.Corrosion Science and Protection Technology, 2010, 22(3), 173 (in Chinese). 赵莉萍, 吴立凡, 赵勇桃, 等. 腐蚀科学与防护技术, 2010, 22(3), 173. 43 Ruan X m. Effects of Gd addition on microstructure and mechanical pro-perties of 5Cr5moSiV1 steel. master's Thesis, Nanchang University, China, 2015 (in Chinese). 阮先明. 稀土Gd对5Cr5moSiV1钢组织及性能的影响. 硕士学位论文, 南昌大学, 2015. 44 Fu H, Xiao Q, Kuang J, et al.materials Science & Engineering A, 2007, 466(1-2), 160. 45 Baik Y, Yong C, moon B m, et al.Physics of metals & metallography, 2015, 116(11), 1135. 46 Pint B A.Oxidation of metals,1996, 45(1), 1. 47 Qin L, Feng G, Zhu X.Journal of Rare Earths, 2007, 25(4),485. 48 Blajiev O, Chigirinskaya L, Chernova G.Electrochimica Acta, 1998, 43(1), 199. 49 Zhang X H. Effect of C, Si, Cr and mo contents on microstructure and porperties of 2507 cast duplex stainless steels. master's Thesis, Harbin University of Science and Technology, China, 2014 (in Chinese). 张兴洪. C、Si、Cr、mo含量对2507铸造双相不锈钢组织和性能的影响. 硕士学位论文, 哈尔滨理工大学, 2014. 50 Yan Y F, Xu X Q.Journal of materials Protection, 2016, 49(1), 36 (in Chinese). 颜雨飞, 徐向棋. 材料保护, 2016, 49(1), 36. 51 Guo T m, Jia J G, Nan X L et al.Transactions of materials and Heat Treatment, 2013, 34(5), 125 (in Chinese). 郭铁明, 贾建刚, 南雪丽, 等. 材料热处理学报, 2013, 34(5), 125. 52 Vasudevan m, Bhaduri A K, Baldev Raj, et al.Journal of materials Processing Technology, 2003, 142(1), 20. 53 Lu L, Yang H.Hot Working Technology, 2010, 39(17), 39 (in Chinese). 路磊, 杨华. 热加工工艺, 2010, 39(17), 39. 54 Wilmes S, Zwick G.The Use of Tool Steels, Experience and Research. 2002, 1, 227. 55 Chen G S, Wu B H, Zhou L C, et al. Acta metallurgica Sinica, 1993, 6(2), 81 (in Chinese). 陈国生,吴波华,周乐成,等. 金属学报, 1993, 6(2), 81. 56 Banda S C K, merwe J V D.British Corrosion Journal, 2014, 49(1), 32. 57 Sherif E S m, Potgieter J H, Comins J D, et al.Corrosion Science, 2009, 51(6),1364. 58 Sherif E S m, Potgieter J H, Comins J D, et al.Journal of Applied Electrochemistry, 2009, 39(8), 1385. 59 Varga K, Barnard W O, Baradlai P.Journal of Iron and Steel Research(International), 1998,136(1-2), 29. 60 Wang Z X, Guo T m, Song J, et al.Journal of Gansu Sciences, 2014, 26(1), 62 (in Chinese). 王昭翔, 郭铁明, 宋俊, 等.甘肃科学学报, 2014, 26(1), 62. 61 Hui Z. The effect of boron element on corossion resistances of lCrl7 ferritic stainless steels. master's Thesis, Lanzhou University of Technology, China, 2013 (in Chinese). 惠枝. 硼元素对1Cr17不锈钢在酸性介质中腐蚀行为的影响. 硕士学位论文, 兰州理工大学, 2013. 62 Nai Q L, Zheng W J, Song Z G, et al.Journal of Iron and Steel Research, 2013, 25(6), 53 (in Chinese). 佴启亮, 郑文杰, 宋志刚, 等. 钢铁研究学报, 2013, 25(6), 53. 63 Bai G, Lu S, Li D, et al.Journal of the Electrochemical Society, 2015, 162(9), C473. 64 Zhang W, Yang S W, He X H. Transantions of materials and Heat Treatment, 2009, 30(1), 45 (in Chinese). 张崴, 杨善武, 贺信莱. 材料热处理学报, 2009, 30(1), 45. 65 Kasparova O V.Protection of metals & Physical Chemistry of Surfaces, 2013, 49(6), 734. 66 Zhang X Y, Lu H J, Xu D R, et al.Chemical Engineering & machinery, 2015, 42(3), 329 (in Chinese). 张旭昀, 芦海俊, 许东饶, 等. 化工机械, 2015, 42(3), 329. 67 Yang L Y, Liu W, Lu m X.Acta metallurgica Sinica, 2006, 42(12), 1279 (in Chinese). 杨丽颖, 柳伟, 路民旭. 金属学报, 2006, 42(12), 1279. 68 Xiang H L, Huang W L, Liu D, et al.Acta metallurgica Sinica, 2010, 46(3), 304 (in Chinese). 向红亮, 黄伟林, 刘东, 等. 金属学报, 2010, 46(3), 304. 69 Liu D, Xiang H L, Hu Y R.Foundry Technology, 2015(6), 1342 (in Chinese). 刘东, 向红亮, 胡育瑞. 铸造技术, 2015(6), 1342. 70 Azuma S, miyuki H, Kudo T.Transactions of the Iron & Steel Institute of Japan, 1996, 36,793. 71 Zhang X J, Gao F, Liu Z Y.Steel Research International, 2017, 88(2), 59. 72 Sun m, Yang Y Y, Luo m, et al. Acta metallurgica Sinica, 2015, 28(9), 1183 (in Chinese). 孙敏,杨媛媛,罗明,等. 金属学报, 2015, 28(9), 183. 73 Jin H P, Kim J K, Lee B H, et al.Scripta materialia, 2014, 76(2), 77. 74 Kumar P A, Babu S P K, Varghese A S.metallography microstructure & Analysis, 2017, 6(4), 324. 75 Jang C Y, Yang Y F, Zhang Z Y, et al. Acta metallurgica Sinica, 2018, 54(4), 581 (in Chinese). 蒋成洋,阳颖飞,张正义,等. 金属学报, 2018, 54(4), 581. 76 Jargelius-Pettersson R F A.Corrosion Science,1999, 41(8), 1639. 77 Lu Y H, Song Y Y, Chen S H, et al.Acta metallurgica Sinica, 2016, 52(3), 298 (in Chinese). 鲁艳红, 宋元元, 陈胜虎, 等. 金属学报, 2016, 52(3), 298. 78 Li Y S, Spiegel m, Shimada S.materials Letters, 2004, 58(29), 3787. 79 Newman R C.Corrosion Science, 1985, 25(5), 331. 80 Choi Y S, Shim J J, Kim J G.Journal of Alloys and Compounds, 2005, 391(1-2), 162. 81 Liang C H, Shigeo T J K W. materials Science and Technology, 1995(1), 72 (in Chinese). 梁成浩, 过川茂男.材料科学与工艺, 1995(1), 72. 82 Xu Q, Gao K, Lv W, et al.Corrosion Science, 2015, 102(2), 114. 83 Liang C H, Zhang J D.Corrosion Science and Protection Technology, 1995, 7(4), 336 (in Chinese). 梁成浩, 张继德. 腐蚀科学与防护技术, 1995, 7(4), 336. 84 Zhang X Y, Gao m H, Xu Z Y, et al.Journal of materials Engineering, 2013(8), 36 (in Chinese). 张旭昀, 高明浩, 徐子怡, 等. 材料工程, 2013(8), 36. 85 Hara T, Takahashi A, Asahi H, et al.Corrosion, 2000, 56(4), 419. 86 Banas J, mazurkiewicz A.materials Science & Engineering A, 2000, 277(1), 183. 87 Shu J, Bi H, Li X, et al.Corrosion Science, 2012, 57(2),89. 88 Zhang J X, Liu Y Z. IOP Conference Series, materials Science and Engineering, 2017,182, 1757. 89 Pardo A, merino m C, Carboneras m, et al.Corrosion Science, 2006, 48(5), 1075. 90 Sun T, Deng B, Xu J L, et al.Journal of Chinese Society for Corrosion and Protection, 2010, 30(6), 421 (in Chinese). 孙涛, 邓博, 徐菊良, 等. 中国腐蚀与防护学报, 2010, 30(6), 421.