Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1681-1684    https://doi.org/10.11896/cldb.17090234
  金属与金属基复合材料 |
304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为
张潇华1, 于思荣2, 谭哲1, 郭丽娟1, 刘旭1
1 中国石油大学胜利学院机械与控制工程学院,东营 257061
2 中国石油大学(华东)机电工程学院,青岛 266580
Corrosion Behavior of 304 Stainless Steel in Al-6Si-10Cu Energy Storage Alloy Solution
ZHANG Xiaohua1, YU Sirong2, TAN Zhe1, GUO Lijuan1, LIU Xu1
1 Department of Mechanical and Control Engineering, Shengli College China University of Petroleum, Dongying 257061
2 College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580
下载:  全 文 ( PDF ) ( 6847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变储能材料与容器的相容性是太阳能蓄能技术应用成功的关键因素之一。本工作选用Al-6Si-10Cu合金为储能材料、304不锈钢为容器材料,通过设计液态腐蚀试验,结合金相显微镜、XRD分析仪、电子探针等仪器,研究了304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为和机理,并对腐蚀反应进行了动力学分析。结果表明:腐蚀层分内、外两层;内腐蚀层主要由Al95Fe4Cr相组成,呈条带状,较致密且显微硬度高于外腐蚀层;外腐蚀层比较疏松,主要由FexSiyAlz相和FeAl相组成;随时间的延长,因Al95Fe4Cr、FexSiyAlz等金属间化合物对元素扩散的阻挡作用,腐蚀速率先减小后趋于平缓,而腐蚀层厚度和腐蚀失重一直增加,并趋于稳定;腐蚀产物生长指数n为0.673,腐蚀类型为扩散腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张潇华
于思荣
谭哲
郭丽娟
刘旭
关键词:  Al-Si-Cu合金  相变储能  304不锈钢  腐蚀    
Abstract: The compatibility of phase change energy storage materials with containers is one of the key factors for the successful application of solar energy storage technology. In this work, Al-6Si-10Cu alloy was chosen as the heat storage material, the 304 stainless steel as the container material. By designing a liquid corrosion test, the corrosion behavior and mechanism of 304 stainless steel in Al-6Si-10Cu energy storage alloy li-quid were investigated with the aid of metallographic microscope ,electron probe and XRD analyzer ect. What's more, the kinetic analysis of corrosion reaction was also carried out. The results showed that the corrosion layer consists of a inside layer and a outside layer. The inner corrosion layer is mainly composed of Al95Fe4Cr phase,banded and denser. And its microhardness is bigger than the outer layer's. The outer corrosion la-yer is loose and is mainly composed of FexSiyAlz phase and FeAl phase. Due to the blocking effects of intermetallic compounds such as Al95-Fe4Cr and FexSiyAlz on the diffusion of elements, the corrosion rate decreases first and then tends to slow down with the erosion time increasing. The thickness of corrosion layer and the corrosion weight loss increase gradually with the increase of the time,and then tend to be stable. The corrosion product's growth index n is 0.673, indicating that the corrosion type is diffusion corrosion.
Key words:  Al-Si-Cu alloy    phase change energy storage    304 stainless steel    erosion
                    发布日期:  2019-05-16
ZTFLH:  TG178  
基金资助: 教育部中央高校基本科研业务费专项资金(11CX05003A);国家级大学生创新训练项目(201713386029)
通讯作者:  yusr@upc.edu.cn   
作者简介:  张潇华,中国石油大学胜利学院讲师,2015年获中国石油大学(华东)工学硕士学位。研究方向为材料失效与表面改性。于思荣,中国石油大学(华东)教授,博士研究生导师。研究方向为金属材料、表面工程。
引用本文:    
张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
ZHANG Xiaohua, YU Sirong, TAN Zhe, GUO Lijuan, LIU Xu. Corrosion Behavior of 304 Stainless Steel in Al-6Si-10Cu Energy Storage Alloy Solution. Materials Reports, 2019, 33(10): 1681-1684.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17090234  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1681
1 Cheng X M, He G, Wu X W, et al. Materials Review A:Review Papers, 2010, 24(9), 139 (in Chinese).
程晓敏, 何高, 吴兴文,等. 材料导报:综述篇, 2010, 24(9), 139.
2 Ye J Y. Research on the heat storage properties and corrosivity of Mg-Cu-Zn-Al-Si alloys. Master's Thesis, Wuhan University of Technology, China, 2014 (in Chinese).
叶建元. Mg-Cu-Zn-Al-Si合金储热性能及其腐蚀性研究. 硕士学位论文, 武汉理工大学, 2014.
3 Chen J F. The research on heat storage performance and practical application of aluminum-based high temperature phase change thermal storage material. Master's Thesis, Central South University, China, 2013 (in Chinese).
陈举飞. 铝基高温相变储热材料的储热性能与实际应用研究.硕士学位论文, 中南大学, 2013.
4 Zou X. Corrosion and Protection, 1995, 16(5), 214(in Chinese).
邹向. 腐蚀与防护, 1995, 16(5), 214.
5 Li X H, Li G X, Wu Y, et al.Hot dip plating and seepage plating of steel parts, Chemical Industry Press, China, 2009 (in Chinese).
李新华, 李国喜, 吴勇,等. 钢铁制件热浸镀与渗镀, 化学工业出版社, 2009.
6 Liu J, Wang X, Zeng D B, et al. Acta Energiae Solaris Sinica, 2006, 27(1), 36 (in Chinese).
刘靖, 王馨, 曾大本,等. 太阳能学报, 2006, 27(1), 36.
7 Chen X, Zhang R Y, Li F. Materials Review B:Research Papers, 2011, 25(9),78(in Chinese).
陈枭, 张仁元, 李风.材料导报:研究篇, 2011, 25(9), 78.
8 Shen X Z. Study on heat storage cycle stability of aluminum silicon two eutectic alloy and its surface treatment. Master's Thesis, Guangdong University of Technology, China, 2007 (in Chinese).
沈学忠. 铝硅二元共晶合金储热循环稳定性及其对容器的表面处理研究.硕士学位论文, 广东工业大学, 2007.
9 Zhang R Y, Sun J Q, Lu G H. Materials for Mechanical Engineering, 2006(7), 11(in Chinese).
张仁元, 孙建强, 卢国辉.机械工程材料, 2006(7), 11.
10 Wei B M. Theory and application of metal corrosion, Chemical Industry Press, China, 1997 (in Chinese).
魏宝明. 金属腐蚀理论及应用, 化学工业出版社, 1997.
11 M Vedat Akdeniz, Amdulla O Mekhrabov, Turgay Yilmaz. Scripta Metallurgica et Materialia, 1994, 31(12), 1723.
12 Gu G C, Liu B J. Hot dipping, Chemical Industry Press, China, 1988 (in Chinese).
顾国成, 刘邦津. 热浸镀, 化学工业出版社, 1988.
13 Han S L, Li H L, Wang S M, et al. Metallic Functional Materials, 2010, 1(17), 34 (in Chinese).
韩石磊, 李华玲, 王树茂, 等. 金属功能材料, 2010, 1(17), 34.
14 Guo J T, Sun C, Tan M H, et al. Acta Metallurgica Sinica, 1990(1),20 (in Chinese).
郭建亭,孙超,谭明晖,等. 金属学报, 1990(1), 20.
15 Tong C, Su X P, Li Z, et al. Journal of Materials Engineering, 2013 (7), 54 (in Chinese).
童晨, 苏旭平, 李智,等. 材料工程, 2013(7), 54.
16 Li Z. Research on the silicon reactivity and the influence of alloy elements on the hot-dip galvanizing. Master's Thesis, Central South University, Chian, 2008 (in Chinese).
李智. 硅反应性及合金元素对热浸镀锌影响的研究. 硕士学位论文, 中南大学, 2008.
17 Peng B C. The influence of the temperature and time on the galvanized coating. Master's Thesis, Xiangtan University, Chian, 2007 (in Chinese).
彭碧草. 浸镀温度和浸镀时间对热浸镀锌镀层组织的影响.硕士学位论文, 湘潭大学, 2007.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[3] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[4] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[5] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[6] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[7] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[8] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[9] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[10] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[11] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[12] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[13] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[14] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[15] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed