Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1676-1680    https://doi.org/10.11896/cldb.18040068
  金属与金属基复合材料 |
基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现
李云飞1, 曾祥国2
1 中国工程物理研究院总体工程研究所,绵阳 621999
2 四川大学建筑与环境学院,成都610065
Dynamic Constitutive Model and Finite Element Implementation of Ni-Ti Shape Memory Alloy Based on Irreversible Thermodynamics
LI Yunfei1, ZENG Xiangguo2
1 Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999
2 College of Architecture and Environment, Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 7062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了准确描述Ni-Ti形状记忆合金在高应变率下的动态压缩力学行为,基于不可逆热力学理论框架假定了两个内变量表征Ni-Ti合金应力诱发马氏体相变与塑性屈服的不可逆变形过程,分别推导了马氏体相变与塑性屈服演化规律的主控方程,构建了Ni-Ti合金的三维动态本构模型。根据材料单轴动态压缩实验的应力-应变曲线并采用最小二乘法对本构参数进行了优化识别,然后采用应力补偿更新算法,通过隐式用户子程序接口UMAT将动态本构模型嵌入ABAQUS有限元软件,实现了Ni-Ti合金在高应变率下动态压缩力学行为的数值模拟。通过比对发现,模拟结果与实验数据吻合良好,验证了动态本构模型与UMAT子程序的准确性。本工作为Ni-Ti合金在高速冲击、切削等极端条件下的工程应用奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李云飞
曾祥国
关键词:  形状记忆合金  相变-塑性行为  动态本构模型  UMAT子程序  有限元模拟    
Abstract: In order to actually describe the mechanical behaviourof Ni-Ti shape memory alloys (SMAs) subjected to high strain rate, the master equations which based on irreversible thermodynamics theory is derived by assuming two internal variables to characterize stress-induced martensitic transformation evolution and plastic evolution. Thus a three-dimensional dynamic constitutive model is developed by summarizing master equations of phase transformation and plasticity in the loading process of Ni-Ti alloy. Adopting a stress compensation updating algorithm to update inelastic strain increment, the phenomenological-based constitutive model is embedded into ABAQUS finite element software through user subroutine UMAT with FORTRAN code. Numerical simulation of dynamic responses of Ni-Ti alloy under high strain rate is successfully implemented. The numerical simulation results are in good agreement with experimental data so that the proposed model validation is conducted. The results show that the proposed model not only can describe well the different deformation stage of Ni-Ti alloy but also the constitutive behavior subjected to different strain rates. And it provides the basis for the practical application of Ni-Ti alloy in the condition of impact and high speed cutting.
Key words:  shape memory alloys    phase transformation and plastic behavior    dynamic constitutive model    user subroutine UMAT    finite element simulation
                    发布日期:  2019-05-16
ZTFLH:  TG113.2  
基金资助: 国家自然科学基金委员会与中国工程物理研究院联合基金NSAF(U1430119)
通讯作者:  yunfei_ise@163.com   
作者简介:  李云飞,2018年6月毕业于四川大学,获得工程博士学位。于2012年7月进入中国工程物理研究院总体工程研究所工作至今,主要从事材料动态本构模型及其应用的研究。
引用本文:    
李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
LI Yunfei, ZENG Xiangguo. Dynamic Constitutive Model and Finite Element Implementation of Ni-Ti Shape Memory Alloy Based on Irreversible Thermodynamics. Materials Reports, 2019, 33(10): 1676-1680.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040068  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1676
1 Yang Shengnan, Yang Suyuan, Zhang Xiao, et al.Rare Metal Materials and Engineering, 2016, 45(11), 2847(in Chinese).
杨胜男,杨素媛,张晓,等. 稀有金属材料与工程, 2016, 45(11), 2847.
2 Zheng Biyu, Shang Zejin, Wang Zhongmin. Mechanical Science and Technology of Aerospace Engineering, 2008, 27(9), 1236(in Chinese).
郑碧玉,商泽进,王忠民. 机械科学与技术, 2008, 27(9),1236.
3 Lagoudas D C, Ravi-Chandar K, Sarh K, et al. Mechanics of Materials, 2003, 35(7),689.
4 Liu Jinxu,HuDandan, Zheng Xiuhua, et al. Rare Metal Materials and Engineering, 2013, 42(5),942(in Chinese).
刘金旭,胡丹丹,郑秀华,等.稀有金属材料与工程,2013,42(5),942.
5 Tanaka K. Res Mechanica, 1986, 18,251.
6 Liang C, Rogers C A. Journal of Intelligent Material Systems and Structures, 1990, 1(2), 207.
7 Brinson L C, Lammering R. International Journal of Solids and Structures, 1993, 30(23), 3261.
8 Urbano M F, Auricchio F.Journal of Functional Biomaterials, 2015, 6(2),398.
9 Lagoudas D C, BoZ. International Journal of Engineering Science, 1999, 37(9),1141.
10 Lagoudas D C, Shu S G.International Journal of Mechanical Sciences, 1999, 41(6),595.
11 Auricchio F, Taylor R L.Computer Methods in Applied Mechanics and Engineering, 1997, 143(1), 175.
12 Auricchio F, Taylor R L, Lubliner J. Computer Methods in Applied Mechanics and Engineering, 1997, 146(3), 281.
13 Lubliner J, Auricchio F.International Journal of Solids and Structures, 1996, 33(7),991.
14 Peng X, Chen B, Chen X, et al.Acta Mechanica Solida Sinica, 2012, 25(3), 285.
15 Saint-Sulpice L, Chirani S A, Calloch S. Mechanics of Materials, 2009, 41(1), 12.
16 Hu Guijuan, Zhang Keshi, Huang Shihong.Journal of Guangxi University (Natural Science), 2011, 36(1), 166 (in Chinese).
胡桂娟,张克实,黄世鸿. 广西大学学报(自然科学版), 2011, 36(1), 166.
17 Chen Huayan, Chen Cheng, Zeng Xiangguo, et al. Journal of Sichuan University (Engineering Science), 2016, 48(2), 219(in Chinese).
陈华燕,陈成,曾祥国,等. 四川大学学报(工程科学版), 2016,48(2), 219.
[1] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[2] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[3] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[4] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[5] 袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
[6] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[7] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[8] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[9] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed