Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 17-20    https://doi.org/10.11896/j.issn.1005-023X.2017.020.004
  材料研究 |
Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*
贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐
陕西理工大学材料科学与工程学院,汉中 723001
Effect of Ni Content on Phase Transformation Behavior of Chilled Ni-poor TiNi Shape Memory Alloy Ribbons
HE Zhirong, WU Peize, LIU Kangkai, FENG Hui, WANG Jiale
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001
下载:  全 文 ( PDF ) ( 1466KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用激冷甩带法制备了Ti1-xNix(x=45%~49.8%)(原子分数)形状记忆合金(SMA)薄带,用示差扫描量热仪研究了Ni含量对铸态及450 ℃、500 ℃退火态TiNi SMA薄带相变行为的影响。结果表明,冷却/加热时,铸态和退火态Ti1-xNix(x=45%~49%)SMA薄带发生A→M/M→A一阶马氏体相变;当 Ni含量为49.8%时,铸态和退火态TiNi SMA薄带冷却时发生A→R→M两阶段相变,加热时发生M→A一阶段相变。随Ni含量增加,TiNi SMA薄带马氏体正、逆相变温度范围先增大后减小,Ni含量为48%时相变温度范围最宽。退火态比铸态TiNi SMA薄带相变温度范围窄。随Ni含量增加,TiNi SMA薄带马氏体正、逆相变温度升高,相变热滞增大。当Ni含量为49%时,SMA薄带的马氏体相变温度达最大值,当Ni含量为49.8%时马氏体相变温度迅速下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺志荣
吴佩泽
刘康凯
冯辉
王家乐
关键词:  贫镍TiNi合金薄带  形状记忆合金  相变  相变温度  热滞    
Abstract: The Ti1-xNix(x=45%—49.8%) (atom fraction) shape memory alloy (SMA) ribbons were fabricated by melt spinning process. Effect of Ni content on transformation behavior of as-cast and 450 ℃, 500 ℃ annealed TiNi SMA ribbons were investigated by differential scanning calorimetry. The results showed that the A→M/M →A one-stage martensitic transformation occurs upon cooling and heating in as-cast and annealed Ti1-xNix(x=45%—49%)SMA ribbons. When Ni content is 49.8%, the A→R→M two-stage martensitic transformation occurs upon cooling, and M→A one-stage martensitic transformation occurs upon hea-ting in as-cast and annealed TiNi SMA ribbons. With the increasing Ni content, the temperature range of martensitic transformation upon cooling and reverse martensitic transformation upon heating in TiNi SMA ribbons widens first and then narrows, and reaches the maximum when Ni content is 48%. The martensitic transformation temperature range in the annealed alloy ribbons is narrower than that in as-cast TiNi SMA ribbons. With increasing Ni content, the martensitic and reverse martensitic transformation temperature and temperature hysteresis of TiNi SMA ribbons increase. When Ni content is 49%, the martensitic transformation temperature of SMA ribbons reaches the maximum. When Ni content is 49.8%, the martensitic transformation temperature decreases drastically.
Key words:  Ni-poor TiNi alloy ribbon    shape memory alloy    phase transformation    phase transformation temperature    temperature hysteresis
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG113.25  
基金资助: *陕西省大学生创新创业训练项目(20162255);陕西理工大学研究生创新基金(SLGYCX1730);汉中天杰电力机具制造公司项目(208021001)
作者简介:  贺志荣:男, 1960年生, 博士, 教授, 主要研究方向为材料热处理及形状记忆合金 Tel:0916-2641895 E-mail:hezhirong01@163.comNi
引用本文:    
贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
HE Zhirong, WU Peize, LIU Kangkai, FENG Hui, WANG Jiale. Effect of Ni Content on Phase Transformation Behavior of Chilled Ni-poor TiNi Shape Memory Alloy Ribbons. Materials Reports, 2017, 31(20): 17-20.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.004  或          http://www.mater-rep.com/CN/Y2017/V31/I20/17
1 Salas D, Cesari E, Humbeeck J V, et al. Isothermal B2-B19 0 martensitic transformation in Ti-rich Ni-Ti shape memory alloy [J]. Scrip Mater, 2014,74:64.
2 Xing H, Khantachawana A, Kim H Y, et al. Effect of Ni-content on shape memory behavior of Ti rich Ti-Ni melt-spun ribbons [J]. Mater Sci Forum, 2005,475-479:1925.
3 Mehrabi K, Bruncko M, Kneissl A C, et al. Characterisation of melt spun Ni-Ti shape memory ribbons’ microstructure [J]. Metal Mater Int, 2012,18(3):413.
4 Hamdy, Salam A. Electrochemical behavior of Ti-Ni-Cu shape memory alloy ribbons used for the fabrication of sensors and actuators [J]. J Phys A General Phys, 2013,17(13):317.
5 Meng X L, Sato M, Ishida A. Structure of martensite in deformed Ti-Ni-Cu thin films [J]. Acta Mater, 2011,59(6):2535.
6 Meng X L, Cai W, Fu Y D, et al. Martensite structure in Ti-Ni-Hf-Cu quaternary alloy ribbons containing (Ti, Hf) 2Ni precipitates [J]. Acta Mater, 2010,58(10):3751.
7 Kishi Y, Ikenaga N, Sakudo N, et al. Shape memory behavior of TiNi alloy films sputter-deposited on polyimide substrate [J]. J Alloys Compd, 2013,577S:S210.
8 Wang Qi, He Zhirong, Liu Manqian, et al. Effects of Ni content and solution-aging treatment on multi-stage transformations of TiNi shape memory alloys [J]. Rare Metal Mater Eng, 2011,40(3):0395.
9 He Zhirong, Liu Lin, Wu Peize, et al. Microstructure, transformation and shape memory behavior of chilled Ti-rich Ti-Ni alloy ribbons[J]. Trans Mater Heat Treat, 2016,37(11):12(in Chinese).
贺志荣,刘琳,吴佩泽,等. 激冷富钛Ti-Ni合金薄带的组织、相变和形状记忆行为[J]. 材料热处理学报, 2016,37(11):12.
10He Zhirong. Multi-stage reversible transformation types and their evolving processes of Ti-Ni shape memory alloys [J]. Acta Metall Sin, 2007,43(4):353(in Chinese).
贺志荣. Ti-Ni形状记忆合金多阶段可逆相变的类型及其演化过程[J].金属学报, 2007,43(4):353.
11Miyazaki S, Fu Y Q, Huang W M. Thin film shape memory alloys-fundamental and device applications [M]. Beijing: Science Press,2012,49.
12Jani J M, Leary M, Subic A, et al. Review of shape memory alloy research, applications and opportunities [J]. Mater Des, 2014,56:1078.
[1] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[4] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[8] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[9] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[10] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[11] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[12] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[13] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[14] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[15] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed