Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3033-3040    https://doi.org/10.11896/j.issn.1005-023X.2018.17.016
  金属与金属基复合材料 |
形状记忆合金弹热效应研究进展
袁勃1, 曾磊2, 钱明芳1, 张学习1, 耿林1
1 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001;
2 北京空间飞行器总体设计部,空间智能机器人系统技术 与应用北京市重点实验室,北京 100094
Elastocaloric Effects in Shape Memory Alloys:a Review and New Perspectives
YUAN Bo1, ZENG Lei2, QIAN Mingfang1, ZHANG Xuexi1, GENG Lin1
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001;
2 Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Applications,Beijing Institute of Spacecraft System Engineering, Beijing 100094
下载:  全 文 ( PDF ) ( 1556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的气体压缩制冷技术已不能满足人类对环保节能的要求,新型制冷技术的开发近年来受到了越来越多的关注。与传统气体压缩制冷技术相比,固体制冷技术效率高、对环境友好,引起材料科学界的广泛关注。其原理是通过改变材料的外场环境,如磁场、电场或应力场,使材料的性质(结构、磁矩等)发生改变,从而产生各种热效应,即磁热效应、电热效应、机械热效应(弹热效应、压热效应)。研发具有高的热效应、宽的工作温度范围和性能稳定的室温固体制冷材料是提升固态制冷技术的关键。其中,利用形状记忆合金(SMAs)在单轴循环应力下诱发的弹热效应制冷是目前最有前景的固体制冷技术之一。
   弹热效应(Elastocaloric effect, eCE)是利用形状记忆合金马氏体相变过程中产生的潜热,在应力诱发马氏体相变和逆相变过程中,材料放出和吸收相变潜热,借助制冷循环装置即可实现固体制冷。在研究过程中,弹热制冷展现出很多优点,如大而可逆的绝热温变、简单的应力驱动方式、超宽的温度适用范围等。但现阶段发现的弹热材料也存在疲劳寿命短、滞后损耗大和应变分布不均匀等问题。2014年,美国能源部将弹热制冷列为17种替代气体压缩制冷的新技术之首,推荐为最有希望发展的固体制冷模式。
   近年来,科学家在室温附近诸多形状记忆合金的马氏体相变及其他材料的固态相变中测量出巨大的弹热效应,如Cu-Zn-Al、Ti-Ni-(Cu)、Fe-Pd、Ni-Mn-Sn-(Cu)、Ni-Mn-In-Co等。衡量弹热效应大小的参数主要有绝热温变ΔTad和等温熵变ΔSiso,可以通过直接或间接的方法获得。利用形状记忆合金的应力-应变曲线和麦克斯韦方程可以计算材料的等温熵变ΔSiso,间接地表征弹热效应的大小。而鉴于弹热效应驱动方式简单,更简便的衡量方法是直接测量绝热温变ΔTad,即使用精密的测温设备测量材料相变前后的温度。这种方法不仅可以表征弹热效应的大小,还能了解其热效应产生过程中的细节,如弹热过程中材料温度变化的位置、趋势等。
   本文综述了传统记忆合金(Cu基、Ni-Ti基、Fe基)和新型铁磁性记忆合金(主要是Ni-Mn基)弹热效应的研究进展,分析了不同类型记忆合金在弹热制冷方面的优缺点,最后对弹热制冷材料的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁勃
曾磊
钱明芳
张学习
耿林
关键词:  弹热效应  形状记忆合金  马氏体相变  超弹性  Ni-Ti合金  Ni-Mn-Ga合金    
Abstract: The traditional gas-compression refrigeration technology can no longer meet the requirements of human society for environmental protection and energy conservation. The development of new refrigeration technology has drawn increasingly growing attention in recent years. Compared to the traditional gas-compression refrigeration technique, solid-state cooling technology has aroused extensive interests owing to the high efficiency and environmental friendliness. The principle of solid-state cooling is to change the environment of external field (such as magnetic field, electric field and stress field) of a material, and change the properties (structure, magnetic moment, etc.) of the material accordingly, thus produce the corresponding caloric effects, namely magnetocaloric effect, electrocaloric effect and mechanocaloric effect (elastocaloric effect, barocaloric effect). The key for promoting the solid-state cooling technology lies in the development of room temperature caloric materials that exhibit giant entropy change, wide working temperature interval and high operation stability. Among them, the elastocaloric cooling based on the elastocaloric effect (eCE) induced by uniaxial cyclic stress in shape memory alloys (SMAs) is one of the most promising solid-state cooling technology.
   The eCE in SMAs originates from the martensite transformation enthalpy, i.e. in the process of stress-induced martensite transformation and inverse transformation, the material releases and absorbs the latent heat of phase transformation, and the solid refrigeration can be realized by means of refrigeration cycle device. In the course of the study, elastocaloric cooling technology presemts many advantages, including large and reversible adiabatic temperature change, simple stress-driven method and wide application range of temperature. However, the eCE materials are still exist problems like short fatigue life, large hysteresis loss and uneven strain distribution. In 2014, the elastocaloric cooling technology was ranked as the first of 17 new alternative technologies for gas-compression cooling by U.S. Department of Energy, which has been recognized as the most promising cooling systems.
   Rencntly, scientists have measured large caloric effects in many SMAs near room temperature, such as Cu-Zn-Al, Ti-Ni-(Cu), Fe-Pd, Ni-Mn-Sn-(Cu), Ni-Mn-In-Co. The adiabatic temperature change ΔTad and the isothermal entropy change ΔSiso are the main measuring parameters of eCE, which can be obtained by direct or indirect methods. ΔSiso can be calculated by the stress-strain curve of SMAs and Maxwell’s equation, which can characterize the eCE indirectly. Moreover, due to the simple driving method of the eCE, a more convenient method is measuring the ΔTad directly, which means measure the temperature before and after martensite transformation by a precise temperature measuring equipment. This method can not only characterize the magnitude of eCE directly, but also acquire the changing details in the process of eCE, like the trend or location of temperature changes in eCE materials.
   In this article, the research progress of eCE in traditional SMAs (Cu-, Ni-Ti- and Fe-based) and ferromagnetic SMAs (Ni-Mn-based) are reviewed. The pros and cons of various SMAs for eCE are analyzed. Finally, the development prospects of elastocaloric materials is proposed.
Key words:  elastocaloric effect (eCE)    shape memory alloys (SMAs)    martensitic transformation    superelasticity    Ni-Ti alloy    Ni-Mn-Ga alloy
                    发布日期:  2018-09-19
ZTFLH:  TG135+.2  
基金资助: 国家重点研发计划项目(217YFB0703100)
作者简介:  袁勃:男,1990年生,博士研究生,主要从事铜基形状记忆合金弹热效应研究 E-mail:ybss9093@163.com
引用本文:    
袁勃, 曾磊, 钱明芳, 张学习, 耿林. 形状记忆合金弹热效应研究进展[J]. 材料导报, 2018, 32(17): 3033-3040.
YUAN Bo, ZENG Lei, QIAN Mingfang, ZHANG Xuexi, GENG Lin. Elastocaloric Effects in Shape Memory Alloys:a Review and New Perspectives. Materials Reports, 2018, 32(17): 3033-3040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.016  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3033
1 Qian Suxin, Geng Yunlong, Wang Yi, et al. A review of elastocalo-ric cooling materials, cycles and system integrations[J].International Journal of Refrigeration,2016,64(6):1.
2 Erell Bonnot, Ricardo Romero, Lluís Mañosa, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J].Physical Review Letters,2008,100(12):125091.
3 Tušek J, Engelbrecht K,Mikkelsen L P, et al. Elastocaloric effect of Ni-Ti wire for application in a cooling device[J].Journal of Applied Physics,2015,117(12):10.
4 Enric Stern-Taulats, Pedro O Castillovilla, Lluís Mañosa, et al. Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape-memory Heusler alloy[J].Journal of Applied Physics,2014,115(17):439.
5 Xavier Moya, Enric Stern-Taulats, Sam Crossley, et al. Giant electrocaloric strength in single-crystal BaTiO3[J].Advanced Materials,2013,25(9):1360.
6 Casanova Felix, Labarta Amilcar, Batlle Xavier, et al. Direct observation of the magnetic-field-induced entropy change in Gd5(Six-Ge1-x)4 giant magnetocaloric alloys[J].Applied Physics Letters,2005,86(26):262504.
7 Cui Jun, Wu Yiming, Muehlbauer Jan, et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires[J].Applied Physics Letters,2012,101(7):73904.
8 Ossmer H, Lambrecht F, Gültig M, et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling[J].Acta Materialia,2014,81:9.
9 Garrett J Pataky, Elif Ertekin, Huseyin Sehitoglu. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa[J].Data in Brief,2015,5:7.
10 Lluís Mañosa, Antoni Planes. Materials with giant mechanocaloric effects: Cooling by strength[J].Advanced Materials,2017, 29(11):1603607.
11 Miyazaki Shuichi, Otsuka Kazuhiro. Development of shape memory alloys[J].Iron and Steel Institute of Japan,1989,29(5):353.
12 Miura S, Morita Y, Nakanishi N. Superelasticity and shape memory effect in Cu-Sn alloys[M]//Shape Memory Effects in Alloys. Perkins J. Boston, MA,US: Springer,1975.
13 Miura S,Maeda S,Nakanishi N. Pseudoelasticity in Au-Cu-Zn thermoelastic martensite[J].Philosophical Magazine,1974,30(3):565.
14 Brown L C. The thermal effect in pseudoelastic single crystals of β-CuZnSn[J].Metallurgical Transactions A,1981,12(8):1491.
15 Rodriguez C,Brown L C. The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals[J].Metallurgical and Materials Transactions A,1980,11(1):147.
16 Antoni Planes, Jordi Ortín, Benjamín Martínez, et al. Entropy change of martensitic transformations in Cu-based shape memory alloys[J].Physical Review B,1993,48(6):3611.
17 Lluis Mañosa, Antoni Planes, Eduard Vives, et al. The use of shape-memory alloys for mechanical refrigeration[J].Functional Materials Letters,2009,2(2):73.
18 Eduard Vives, Susan Burrows, Rachel S Edwards, et al. Temperature contour maps at the strain-induced martensitic transition of a Cu-Zn-Al shape-memory single crystal[J].Applied Physics Letters,2011,98(1):11902.
19 Lu D W, Wu H B, Yuan G Q, et al. Chapter 40-Room temperature magnetic refrigerator using both metal Gd or/and Gd-Si-Ge alloys and a permanent magnetic field source[M].Oxford:Elsevier Science,2005:181.
20 Chen Ying, Zhang Xuexi, Dunand David, et al. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires[J].Applied Physics Letters,2009,95(17):25.
21 Toshihiro Omori, Tomoe Kusama, Shingo Kawata, et al. Abnormal grain growth induced by cyclic heat treatment[J].Science,2013,341(6153):1500.
22 Qian Suxin, Geng Yunlong, Wang Yi, et al. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression[J].Philosophical Transactions Series A,2016,374(2074):20150309.
23 Xu Sheng, Huang Haiyou, Xie Jianxin, et al. Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71.5-Al17.5Mn11 shape memory alloy[J].APL Materials,2016,4(10):106106.
24 Pieczyska E A, Tobushi H, Kulasinski K. Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera[J].Smart Materials & Structures,2013,22(3):36.
25 Garrett J Pataky, Elif Ertekin, Huseyin Sehitoglu. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl[J].Acta Materialia,2015,96:420.
26 Ossmer H,Miyazaki S,Kohl M. Elastocaloric heat pumping using a shape memory alloy foil device[C]//18th International Conference on Solid-State Sensors, Actuators and Microsystems.Anchorage, Alaska, USA,2015.
27 Ossmer H, Chluba C, Gueltig M, et al. Local evolution of the elastocaloric effect in TiNi-based films[J].Shape Memory and Superelasticity,2015,1(2):142.
28 Ossmer H, Miyazaki S,Kohl M. The elastocaloric effect in TiNi-based foils[J].Materials Today: Proceedings,2015,2:S971.
29 Schmidt Marvin, Kirsch Susanne-marie, Seelecke Stefan, et al. Elastocaloric cooling: From fundamental thermodynamics to solid state air conditioning[J].Science and Technology for the Built Environment,2016,22(5):475.
30 Ossmer H, Chluba C, Kauffmann-Weiss S, et al. TiNi-based films for elastocaloric microcooling—Fatigue life and device performance[J].APL Materials,2016,4(6):10.
31 Marvin Schmidt, Johannes Ullrich, André Wieczorek, et al. Thermal stabilization of NiTiCuV shape memory alloys observations du-ring elastocaloric training[J].Shape Memory Superelasticity,2015,1(2):132.
32 Nikitin S A, Myalikgulyev G, Annaorazov M P, et al. Giant elastocaloric effect in FeRh alloy[J].Physics Letters A,1992,171(3):234.
33 Xiao Fei, Fukuda Takashi, Kakeshita Tomoyuki. Significant elastocaloric effect in a Fe-31.2Pd (at) single crystal[J].Applied Physics Letters,2013,102(16):4494.
34 Xiao Fei, Fukuda Takashi, Kakeshita Tomoyuki. Critical point of martensitic transformation under stress in an Fe-31.2Pd (at.) shape memory alloy[J].Philosophical Magazine,2015,95(12):1390.
35 Wang Jingmin, Yu Qian, Xu Kangyi, et al. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition[J].Scripta Materialia,2017,130:148.
36 Wei Longsha, Zhang Xuexi, Qian Mingfang, et al. Introducing equia-xed grains and texture into Ni-Mn-Ga alloys by hot extrusion for superplasticity[J].Materials & Design,2016,112:339.
37 Soto-Parra D E, Eduard Vives, David González-Alonso, et al. Stress- and magnetic field-induced entropy changes in Fe-doped Ni-Mn-Ga shape-memory alloys[J].Applied Physics Letters,2010,96(7):71912.
38 Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, et al. Caloric effects induced by magnetic and mechanical fields in a Ni50-Mn25-xGa25Cox magnetic shape memory alloy[J].Physical Review B,2011,83(17):174109.
39 Xu Yang, Lu Bingfeng, Sun Wen, et al. Large and reversible elastocaloric effect in dual-phase Ni54Fe19Ga27 superelastic alloys[J].Applied Physics Letters,2015,106(20):10.
40 Li Yang, Zhao Dewei, Liu Jian. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy[J].Scientific Reports,2016,6:25500.
41 Xiao Fei, Jin Mingjiang, Liu Jian, et al. Elastocaloric effect in Ni50-Fe19Ga27Co4 single crystals[J].Acta Materialia,2015,96:292.
42 Kainuma R,Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation[J].Nature,2006,439(7079):957.
43 Zhang Xuexi, Qian Mingfang, Miao Shengpei, et al. Enhanced magnetic entropy change and working temperature interval in Ni-Mn-In-Co alloys[J]. Journal of Alloys and Compounds,2016,656:154.
44 Zhang Xuexi, Miao Shengpei, Sun Jianfei. Magnetocaloric effect in Ni-Mn-In-Co microwires prepared by Taylor-Ulitovsky method[J].Transactions of Nonferrous Metals Society of China,2014,24(10):3152.
45 Zhang Xuexi, Qian Mingfang, Su Ruizhe, et al. Giant room-tempe-rature inverse and conventional magnetocaloric effects in Ni-Mn-In alloys[J].Materials Letters,2016,163:274.
46 Lu Bingfeng, Xiao Fei, Yan Aru, et al. Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy[J].Applied Physics Letters,2014,105(16):439.
47 Lu Binfeng, Zhang Pengna, Xu Yang, et al. Elastocaloric effect in Ni45Mn36.4In13.6Co5 metamagnetic shape memory alloys under mechanical cycling[J].Materials Letters,2015,148:110.
48 Huang Yujin, Hu Qiaodan, Bruno N M, et al. Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy[J].Scripta Materialia,2015,105:42.
49 Shen Qi, Zhao Dewei, Sun Wen, et al. The effect of Tb on elastocaloric and mechanical properties of Ni-Mn-In-Tb alloys[J].Journal of Alloys and Compounds,2017,696:538.
50 Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys[J].Nature Materials,2005,4(6):450.
51 Zhang Hehe, Qian Mingfang, Zhang Xuexi, et al. Martensite transformation and magnetic properties of Fe-doped Ni-Mn-Sn alloys with dual phases[J].Journal of Alloys and Compounds,2016,689:481.
52 Zhang Hehe, Qian Mingfang, Zhang Xuexi, et al. Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique[J].Materials & Design,2017,114:1.
53 Aydogdu Y, Turabi A S, Kok M, et al. The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys[J].Journal of Alloys and Compounds,2016,683:339.54 Yu Jinke, Ren Jian, Li Hongwei, et al. A new approach to grow the Heusler Ni-Mn-Sn unidirectional crystal[J].Journal of Crystal Growth,2014,402:147.
55 Pedro O Castillo-Villa, Lluís Mañosa, Antoni Planes, et al. Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy[J].Journal of Applied Physics,2013,113(5):53506.
56 Li Yang, Sun Wen, Zhao Dewei, et al. An 8 K elastocaloric tempe-rature change induced by 1.3 transformation strain in Ni44Mn45-x-Sn11Cux alloys[J].Scripta Materialia,2017,130:278.
57 Sun Wen, Liu Jian, Lu Binfeng, et al. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys[J].Scripta Materialia,2016,114:1.
58 Yang Z, Cong Dayong, Huang L, et al. Large elastocaloric effect in a Ni-Co-Mn-Sn magnetic shape memory alloy[J].Materials & Design,2016,92:932.
59 Zhang Ruochen, Qian Mingfang, Zhang Xuexi, et al. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys[J].Journal of Magnetism and Magnetic Materials,2017,428:464.
60 Rubén Millán-Solsona, Enric Stern-Taulats, Eduard Vives, et al. Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys[J].Applied Physics Letters,2014,105(24):241901.
61 Shen Ao, Zhao Dewei, Sun Wen, et al. Elastocaloric effect in a Co50Ni20Ga30 single crystal[J].Scripta Materialia,2017,127:1.
[1] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[2] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[3] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[4] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[5] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 王家乐. Ni含量对激冷贫镍TiNi形状记忆合金薄带相变行为的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 17-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed