Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1198-1205    https://doi.org/10.11896/cldb.17110069
  金属与金属基复合材料 |
铝基层状复合材料界面金属间化合物的研究现状
韩银娜1,2, 张小军1,2, 李龙1,2, 周德敬1,2
1 银邦金属复合材料股份有限公司,无锡 214145
2 江苏省金属层状复合材料重点实验室,无锡 214145
A Review on Study of the Intermetallic Compounds at the Interface of Aluminum matrix Laminated Composites
HAN Yinna1,2, ZHANG Xiaojun1,2, LI Long1,2, ZHOU Dejing1,2
1 Yin Bang Clad material Co., Ltd., Wuxi 214145
2 Jiangsu Key Laboratory for Clad materials, Wuxi 214145
下载:  全 文 ( PDF ) ( 6319KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科学技术的进步和新技术、新产业的出现,特别是高、精、尖技术的迅速崛起和发展,各国对工程材料的需求也越来越广泛,对材料性能提出了越来越苛刻的要求。因此传统、单一的金属材料的应用领域受到很大的限制,越来越不能满足高新技术的发展要求。近年来,能源和资源的消耗日渐增多,许多矿产资源日益枯竭,为了节约资源和能源,减轻产品质量,环保绿色的复合材料已成为主流发展方向。异种金属复合材料通过选择不同的组元层,可具备多种优异性能,以满足抗磨损、抗腐蚀、抗冲击及高导热导电等特殊要求。目前,金属基复合材料在石油、机械、化工、电子及家用电器等许多领域得到了广泛应用。
铝基层状复合材料兼具铝合金的耐腐蚀、高导热、低密度和其他组元层的优良性能,如不锈钢耐腐蚀、铜高导电导热散热、钛耐高温冲击耐腐蚀、镁低密度优良电磁波屏蔽性能等,可满足多种特殊使用要求。铝不锈钢、铝镍及铝钛复合材料的应用,可节约Cr、Ni、Ti等稀贵金属。为了使铝基层状复合材料具有良好的界面结合性能,异种金属复合后,通常进行扩散退火,然而异种金属扩散退火过程中若层状复合材料界面有金属间化合物生成,将会损坏组元层间的结合强度,甚至分层,严重影响复合材料的使用性能。因此,研究界面金属间化合物的形成及生长是开发铝基层状复合材料的关键。
本文较为系统地阐述了常用铝/不锈钢、铝/钛、铝/镍、铝/铜、铝/镁五种铝基层状复合材料界面金属间化合物,介绍了界面金属间化合物相的组成及生长动力学,并给出了五种铝基层状复合材料界面化合物的生成条件。同时,揭示了铝基层状复合材料界面金属间化合物初始形成过程,包括金属相互扩散、到达最大固溶度后初始相的形成、金属间化合物不同相间的转变及金属间化合物厚度的增加,得到了界面化合物厚度与扩散退火时间和温度的关系,金属间化合物层厚度(X)与时间(t)之间的关系满足公式:X=ktn(n为动力学指数)。此外,本文就Si对铝镍、铝钛层状复合材料界面金属间化合物的影响进行了预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩银娜
张小军
李龙
周德敬
关键词:  铝基层状复合材料  金属间化合物  激活能  生长动力学    
Abstract: The process of science and technology, and the emergence of novel technologies and industries,have brought about extensive demand for engineering materials worldwide, as well as stringent requirement for material properties. Accordingly, the limitations for the application of conventional single metal materials has grown more prominent, which cannot satisfy the demands of technology development any longer. Recently, the continuously increasing consumption of energy and resources has led to the gradual depletion of mineral resources. For the sake of saving resources and energy, and reducing the weight of products, environmentally friendly. Composite materials have become the mainstream development direction. As regard to dissimilar metal composites, they are able to be endowed with multiple excellent performances by selecting different metal component layers, which can satisfy the need for wear resistance, corrosion resistance, high thermal and conductivity. At present, metal matrix composites hold widespread application in various fields including petroleum, machinery, chemical industry, electronics and household appliances.
Aluminum matrix laminated composite materialsare capable to meet a variety of special requirements, which is not only because of the corrosion resistance, high thermal conductivity, low density of Al, but also profiting from excellent properties brought by other components, such as corrosion resistance of stainless steel, high conductivity and heat conduction of copper, corrosion resistance of titanium to high temperature impact, amazing electromagnetic shielding performance and low density of magnesium. The implementation of composites like Al/stainless steel, Al/Ni, Al/Ti can remarkably reduce the use of precious metals such as Cr, Ni, Ti. Usually, diffusion annealing will be carried out after heterogeneous metal compounding, aiming at achieving better interfacial bonding properties of aluminum matrix laminated composites. However, intermetallic compounds generated at the interface of laminated composites during the diffusion annealing of heterogeneous metals will do harm to the interlaminar bonding strength, and even lead to delamination, which seriously deteriorates the performance of the composite materials. Consequently, the research on the formation and growth of intermetallic compounds is the key to the development of aluminum matrix laminated composites.
This paper providesa systematical description on aluminum matrix laminated composite materials including Al/stainless steel, Al/Ni, Al/Cu, Al/Ti and Al/mg, introduces phase compositions and growth kinetics of the intermetallic compounds, and points out the formation conditions of the intermetallic compounds of these aluminum matrix laminated composites. meanwhile, it reveals the initial formation process of intermetallic compounds, which includes metal mutual diffusion, initial formation after the maximum solid solubility, transformation of different intermetallic compounds, thickness increase. And it also expounds the relationship of thickness, with diffusion time and temperature, and the relationship between thickness of intermetallic compounds (X) and time (t) meets the equation of X=ktn. Finally, the effect of Si on the intermetallic compounds at the interface of Al/Ti and Al/Ni is prospected.
Key words:  aluminum matrix laminated composite materials    intermetallic compound    activity energy    growth kinetic
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TB331  
基金资助: 江苏省金属层状复合材料重点实验室(Bm2014006);江苏省基础研究计划(自然科学基金)(BK20161151)
通讯作者:  dejing.zhou@cn-yinbang.com   
作者简介:  韩银娜,2013年6月毕业于东北大学,硕士研究生。现为银邦金属复合材料股份有限公司技术研究院研发工程师,主要从事金属复合材料的研发。周德敬,教授级高工,国家“万人计划”科技创新领军人才,国家863主题项目首席专家,科技部中青年科技创新领军人才,江苏省“双创人才”,江苏省“六大人才高峰”创新人才团队首席专家,无锡市新吴区人才创新创业促进会会长,银邦金属复合材料股份有限责任公司技术研究院院长。
引用本文:    
韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
HAN Yinna, ZHANG Xiaojun, LI Long, ZHOU Dejing. A Review on Study of the Intermetallic Compounds at the Interface of Aluminum matrix Laminated Composites. Materials Reports, 2019, 33(7): 1198-1205.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17110069  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1198
1 Peng Dashu, Liu Langfei, Zhu Xuxia.materials Review, 2000, 14(4), 23 (in Chinese).
彭大署, 刘浪飞, 朱旭霞.材料导报, 2000, 14(4), 23.
2 Richards R W, Jones R D, Clements P D, et al. International materials Reviews, 1993,39(5),191.
3 Fan minyu, Guo Xunzhong, Cui Shengqiang, et al. Rare metal material and Engineering, 2017(3),198.
范敏郁, 郭训忠, 崔圣强, 等. 稀有金属材料与工程, 2017(3),198.
4 Guo Xunzhong, Fan minyu, Liu Zhongli.Rare metal materials and Engineering, 2017, 46 (5),1192.
5 meng Xuan. Theroll-bonding processes and microstructure and properties of Ti/Al/mg/Al/Ti laminated composites. master's Thesis, Yanshan University, China, 2016 (in Chinese).
孟宣. Ti/Al/mg/Al/Ti叠层板热轧复合与组织性能研究.硕士学位论文,燕山大学, 2016.
6 Hu Hongbo. Research onroll bonding process of Al/mg/Ti multilayered composite sheet and its bonding interface. master's Thesis, Chonqing University, China, 2015 (in Chinese).
胡宏波. 铝/镁/钛层状复合板轧制工艺与结合界面研究.硕士学位论文,重庆大学, 2015.
7 Xu L, Cui Y Y, Hao Y L, et al. materials Science and Engineering A, 2006, 435,638.
8 Yang Dengke, Hodgson Peter.Intermetallics, 2009, 17,727.
9 Zheng Haipeng, Yang Jinliang, Wu Ruizhi.Advanced Engineering ma-terials, 2016,18(10),1.
10 macwan X Q, Jiang C L, Chen D L. materials Science Engineering A, 2013, 587, 344.
11 Du Daming, Li Fangping, ma mingliang.material & Heat Treatment, 2012, 41 (22), 147(in Chinese).
杜大明, 李坊平, 马明亮.材料热处理技术, 2012,41(22), 147.
12 Li Li. Study oninterfacial microstructure and properties of Al/Cu (A356/T2) bimetal in liquid-solid compound casting process. master's Thesis, Hefei University of Technology, China, 2017 (in Chinese).
李立. 铝铜(A356/T2)双金属液固复合界面组织与性能研究.硕士学位论文,合肥工业大学, 2017.
13 Li Xiaobing, Zu Guoyin, Wang Ping. The Chinese Journal of Nonferrous metals, 2013, 23 (5),1202 (in Chinese).
李小兵, 祖国胤, 王平. 中国有色金属学报, 2013, 23(5),1202.
14 Yu Kun, Song Juemin,Chen Fuwen, et al. Journal of Central South University (Science and Technology), 2011, 42 (8), 2297 (in Chinese).
余琨, 宋觉敏, 陈福文, 等. 中南大学学报, 2011, 42(8), 2297.
15 Zhang Caibei, Cui Jianzhong.Acta metallurgica Sinica, 1999, 35(2),113 (in Chinese).
张彩碚, 崔建忠.金属学报, 1999,35(2),113.
16 Zhou Dejing, Yin Lin, Zhang Xinming.Chinese Journal of Nonferrous me-tals, 2012, 22(9), 2461 (in Chinese).
周德敬, 尹林, 张新明.中国有色金属学报, 2012, 22(9),2461.
17 Ju Young Jin, Hong Sun Ig.materials Science & Enginee-ring A, 2014, 596,1.
18 mannan S K, Seetharaman V, Raghunathan V S.materials Science & Engineering, 1983, 60,79.
19 Akramifard H R, mirzadeh H, Parsa m H.materials Science & Enginee-ring A, 2014, 613(34), 232.
20 Kim In Kyu, Hong Sun Ig.Advanced materials Research, 2013, 813, 34.
21 Song Jun Young, Kim In Kyu, Lee Young Seon,et al. Korea Journal of metal materials, 2011, 49(11), 910.
22 Chen Xin, Li Long, Zhou Dejing.materials Review A:Review Papers, 2016, 30(7),125 (in Chinese).
陈鑫, 李龙, 周德敬.材料导报:综述篇, 2016, 30(7),125.
23 Hwang Y H , Horng C F , Lin S J , et al.Journal of materials Science, 1997, 32(3),719.
24 Bhagat R B.Journal of materials Science, 1989, 24,1496.
25 Kim min Jun, Woo Seok Ho, Kim Jung Gu.materials Transactions, 2015, 56(9),1599.
26 Hwang Weng Sing.Journal of Engineering materials and Technology, 2012, 134(1),014501.
27 Lee J E, Bae D H, Chung W S.Journal of materials Processing Technology, 2007, 187-188(3),546.
28 Bae DongHyun, Jung SuJung.Journal of the Korea Institute metal mate-rial, 2009, 47 (9),573.
29 Kong Jung Hyun, Okumiya masahiro, et al. metallurgical and materials Transactions A, 2014, 45(10),4443.
30 Shen Wuling, Li Jinshan, Gao Peng, et al.Transactions of materials and Heat Treatment, 2014, 35(S2),171 (in Chinese).
沈物灵, 李金山, 高鹏, 等.材料热处理学报, 2014, 35(S2),171.
31 Duboury L, Pelletier H, Vaissiere D, et al.Wear, 2002, 253, 1077.
32 mi Bingxue. Study of the interface diffusion process of cold rolling Cu/Al clad metal sheet in annealing process.master's Thesis, Shenyang University of Technology, China, 2012 (in Chinese).
密冰雪. 退火过程中冷轧Cu/Al复合板界面扩散过程研究. 硕士学位论文,沈阳工业大学, 2012.
33 Zhang Jian, Wang Binhao, et al. Transaction of Nonferrous metals Society of China, 2016, 26,3283.
34 Antoine Gueydan, Bernadette Domengès, Eric Hug. Intermetallics,2014, 50,34.
35 Abbasi m, Taheri A K, Salehi m T.Journal of Alloys and Compounds, 2001,319, 233.
36 Hang C J, Wang C Q, mayer m, et al. microelectronics Reliability, 2008, 48,416.
37 Lee W B, Bang K S, Jung S B. Journal of Alloys and Compounds, 2005,390, 212.
38 Tanaka Y, Kajihara m, Watanabe Y.materials Science and Engineering A, 2007,445-446, 355.
39 Li Xiaobing, Zu Guoyin, Wang Ping.Transactions of Nonferrous metals Society of China, 2015, 25,36.
40 Yu Qingbo, Liu Xianghua, Sun Ying.Science China materials, 2015, 58,574.
41 Du Wenjia, Xie ming, et al. Transactions of materials and Heat Treatment, 2013,34(S2),14 (in Chinese).
杜文佳, 谢明, 等.材料热处理学报, 2013,34(S2),14.
42 Yuan Wuhua, Zhou Jing.Journal of Hunan University (Natural Sciences), 2014, 41(12),1(in Chinese).
袁武华, 周静.湖南大学学报(自然科学版), 2014,41(12),1.
43 Hug E, Bellido N.materials Science and Engineering A, 2011, 528,7103.
44 Li Hanyan, Chen Wenge, Liu Jie.Transactions of materials and Heat Treatment, 2017, 38(7),63 (in Chinese).
李晗嫣, 陈文革, 刘洁.材料热处理学报, 2017, 38(7),63.
45 meguro K, O. m, Kajihara m. Journal of material Science, 2012, 47, 4955.
46 Lee W B, Bang K S, Jung S B. Journal of Alloys and Compounds, 2005, 390, 212.
47 Bugakov B. Diffusion of the metal and alloy, Science Press, China, 1958 (in Chinese).
Bugakov B.金属与合金中的扩散, 科学出版社, 1958.
48 Xu Zhuohui, Tang Guoyi.Rare metal materials and Engineering, 2007, 36(2),296 (in Chinese).
徐卓辉, 唐国翌.稀有金属材料与工程, 2007, 36(2),296.
49 Zu Guoyin, Liu Gang, Wang Ning, et al. Transactions of materials and Heat Treatment, 2007, 28(2),54(in Chinese).
祖国胤, 刘刚, 王宁,等. 材料热处理学报, 2007, 28(2), 54.
50 Yu Kun, Xiong Hanqing, et al. Rare metal materials and Engineering, 2016, 45(5),1100.
51 ma E, Thompson C V.Journal of Applied Physics, 1990, 69(4) , 2211.
52 Battezzati L, Pappalepore P, Derbiano F,et al. Acta material, 1999, 47(6),1901.
53 López G A, Sommadossi S, Gust W. Interface Science, 2002, 10,13.
54 López G A, Sommadossi S, Zieba P. materials Chemistry and Physics, 2002, 78,459.
55 Wołczyński W, Kloch J, Janczak-Rusch J.materials Science Forum, 2006, 508,385.
56 mozaffari A, Hosseini m, manesh H D.Journal of Alloys and Compounds, 2011, 509,9938.
57 Liu Xiaotao, Zhang Yan'an, Cui Jianzhong.materials Review, 2002, 16(7),41 (in Chinese).
刘晓涛, 张延安, 崔建忠.材料导报, 2002, 16(7),41.
58 mostafa mirjalili, mansour Soltanieh.Intermetallics, 2013, 32, 297.
59 Chen Xiaoguang, Yan Jiuchun, Gao Fei.Ultrasonics Sonochemistry, 2013, 20(1), 144.
60 Yao Wei, Wu Aiping, Zou Guisheng,et al. materials Science and Engineering A, 2008, 480, 456.
61 Price R D, Jiang F, Kulin R m, et al. materials Science and Engineering A, 2011, 528,3134.
62 Chaudhari G P, Acoff V L. Intermetallics, 2010, 18,472.
63 Tardy J, Tu K N. Physical Review B, 1985, 32, 2070.
64 Kral J, Ferdinandy m, Liska D.materials Science and Engineering A, 1991, 140,479.
65 Nonaka K, Fujii H, Nakajima H. materials Transactions, 2001, 42(8),1731.
66 Loo F J J V, Rieck G D. Acta metallurigica, 1973, 21, 61.
67 Shimozaki T, Okino T, Yamane m,et al. Defect and Diffusion Forum, 1997, 143-147,591.
68 Cheng Yujie, Guo Chunhuan,Zhou Peijun,et al. materials China, 2015, 34(4),317 (in Chinese).
程玉洁, 果春焕, 周培俊,等. 中国材料进展, 2015,34(4),317.
69 Zhang Nan. Study on the interface behavior for the Al/mg alloys compo-site materials made by explosive welding.masters Thesis, Taiyuan University of Technology, China, 2015 (in Chinese).
张楠. 铝/镁合金爆炸焊接层状复合材料界面行为的研究.硕士学位论文,太原理工大学, 2015.
70 Lee Kwang Seok, Yoon Dong Hyun, Kim Hye Kyoung,et al. materials Science Engineering A, 2012, 556,319.
71 Kim J S, Lee K S, Kwonb Y N,et al. materials Science Engineering A, 2015, 628,1.
72 Yan Yinbiao, Wang Jinhua, Shen Xiaoping. Chinese Journal of Nonferrous metals, 2010, 20(4),674 (in Chinese).
颜银标, 王进华, 申小平.中国有色金属学报, 2010,20(4), 674.
73 Saleh H, Reichelt S, Schmidtchen m.Key Engineering materials, 2014, 622-623,467.
74 Lee K S, Lee Y S, Kwon Y N. materials Science Engineering A, 2014, 606,205.
75 Han Yinna, Zhang Xiaojun, Li Long, et al. Transactions of materials and Heat Treatment, 2018, 39(3),1(in Chinese).
韩银娜, 张小军, 李龙, 等.材料热处理学报, 2018, 39(3),1.
76 Han Yinna, Zhang Xiaojun, Li Long,et al. Heat Treatment of metals, 2017, 42(11),42 (in Chinese).
韩银娜, 张小军, 李龙,等. 金属热处理, 2017, 42(11),42.
[1] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[2] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[3] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[4] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[5] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[6] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[7] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[8] 朱利敏, 李全安. Mg-8.08Gd-2.41Sm-0.3Zr合金热压缩变形及热加工图[J]. 《材料导报》期刊社, 2018, 32(4): 593-597.
[9] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[10] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[11] 胡志涛, 李明伟, 尹华伟, 刘杭. 磷酸二氢钾晶体薄表面层生长动力学实时显微研究[J]. 材料导报, 2018, 32(18): 3116-3122.
[12] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[13] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[14] 詹伟涛,贺建雄,王艺臻,姜宏. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2062-2065.
[15] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed