Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1878-1883    https://doi.org/10.11896/j.issn.1005-023X.2018.11.015
  材料综述 |
Fe-Al金属间化合物氢脆效应研究现状
黄广棋1,张桂凯2,罗朝以1,唐涛1,2
1 表面物理与化学重点实验室,绵阳 621908;
2 中国工程物理研究院材料研究所,绵阳 621907
A Review on Hydrogen Embrittlement of Fe-Al Intermetallics
HUANG Guangqi1, ZHANG Guikai2, LUO Zhaoyi1, TANG Tao1,2
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908;
2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907
下载:  全 文 ( PDF ) ( 2662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Fe-Al金属间化合物具有良好的抗氧化、抗硫化腐蚀性能以及高温结构性质,而且质轻价廉,在航空航天、汽车工业、能量转换系统、过滤材料等领域具有广阔的应用前景,但在室温下易发生环境脆化,这也是其未能得到大规模应用的主要原因。本文在介绍Fe-Al金属间化合物特性的基础上,重点综述了Fe-Al金属间化合物氢脆行为及其机制的实验和理论研究进展,提出了今后的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄广棋
张桂凯
罗朝以
唐涛
关键词:  Fe-Al金属间化合物  氢脆效应  氢脆机制    
Abstract: Fe-Al intermetallics display notable application potential in the fields of aerospace, auto industry, energy exchanging system, filteration materials, etc. Owing to their favorable oxidation resistance and sulfidation resistance as well as high-tempe-rature performance. However, the poor ductility of intermetallics is the biggest obstacle for their large-scale practical application. In this paper, we provide an overview upon the research endeavors in the past decade about the hydrogen embrittlement behavior and the corresponding mechanism, and put forward the points which deserve consideration in the future studies.
Key words:  Fe-Al intermetallics    hydrogen embrittlement    hydrogen mechanism
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TG111.91  
  TG146.2+  
基金资助: 国家自然科学基金面上项目(21471137)
作者简介:  黄广棋:男,1992年生,硕士研究生,主要从事金属与合金中的氢脆研究 E-mail:huanggq2113@163.com 唐涛:通信作者,1972年生,博士,研究员,主要从事氢与材料相互作用的研究 E-mail:tangtao@caep.cn
引用本文:    
黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
HUANG Guangqi, ZHANG Guikai, LUO Zhaoyi, TANG Tao. A Review on Hydrogen Embrittlement of Fe-Al Intermetallics. Materials Reports, 2018, 32(11): 1878-1883.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.015  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1878
1 张永刚,韩雅芳,陈国良.金属间化合物结构材料[M].北京:国防工业出版社,2001:857.
2 Liu C T, Lee E H, McKamey C G. An environmental effect as the major cause for room-temperature embrittlement in FeAl[J].Scripta Materialia,1989,23(6):875.
3 Li Yunfeng. Preparation and organizational performance research of Fe-Al compound-alloys[D].Lanzhou: Lanzhou University of Technology,2004(in Chinese).
李云峰.Fe-Al系化合物合金的制备与组织性能研究[D].兰州:兰州理工大学,2004.
4 Balasubramaniam R. Hydrogen in iron aluminides[J].Journal of Alloys and Compounds,2002,330-332:506.
5 Zamanzade M, Barnoush A, Motz C. A review on the properties of iron aluminide itermetallics[J].Crystals,2016,6:10.
6 Barnoush A, Vehoff H. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation[J].Acta Materialia,2010,58:5274.
7 Fan R H, Yin Y S, Bi J Q. Electron structures and intrinsic brittlement of Fe-25Al aluminides[J].Journal of Synthetic Crystals,2002,31(5):468(in Chinese).
范润华,尹衍生,毕见强.Fe-25Al铝化物的电子结构及其本质脆性[J].人工晶体学报,2002,31(5):468.
8 Stein F. Summer school on iron aluminides part 1: The binary FeAl system[C]∥In Proceedings of the 5th Discussion Meeting on the Development of Innovative Iron Aluminum Alloys. Prague, 2009.
9 Ziegler N A. Resistance of iron-aluminum alloys[J].Transaction of AIME,1932,100:267.
10 Cahn R W, Haasen P, Kramer E J,著.丁道云,等译.材料科学与技术丛书(第8卷:非铁合金的结构与性能)[M].北京:北京科学出版社,1999:639.
11 Jrodan J L, Deevi S C. Vacancy formation and effects in FeAl[J].Intermetallics,2003,11(6):507.
12 Krachler R, Ipser H, Sepiol B, et al. Diffusion mechanism and defect concentrations in β′-FeAl, an intermetallic compound with B2 structure[J].Intermetallics,1995,3(1):83.
13 Zhu J H, Huang S B, Wan X J. Surface reaction of Fe3Al with water vapor and oxygen[J].Scripta Metallurgica et Materialia,1995,32(9):1399.
14 Zhu Y F, Liu C T, Chen C H. Direct evidence of hydrogen generation from the reaction of water with FeAl[J].Scripta Materialia,1996,35(12):1435.
15 Rao V S. Some observations on the hydrogen embrittlement of Fe3Al-Fe3AlC intermetallic compounds[J].Materials Research Bulletin,2004,39(2):169.
16 Yang H G, Zhan Q, Zhao W W, et al. Study of an iron-aluminide and alumina tritium barrier coating[J].Journal of Nuclear Materials,2011,417(1-3):1237.
17 褚武扬,乔利杰,李金许,等.氢脆和应力腐蚀:典型体系[M].北京:科学出版社,2013:966.
18 Zamanzade M, Barnoush A. An overview of the hydrogen embrittlement of iron aluminides[J].Procedia Materials Science,2014,3:2016.
19 Kupka M, Stpień K, Nowak K. Studies on hydrogen diffusivity in iron aluminides using the Devanathan-Stachurski method[J].Journal of Physics and Chemistry of Solids,2014,75(3):344.
20 Stpień K, Kupka M. Diffusivity of hydrogen in B2 iron aluminides[J].Scripta Materialia,2006,55(7):585.
21 Stpień K, Kupka M. Effect of hydrogen on room-temperature hardness of B2 FeAl alloys[J].Scripta Materialia,2008,59(9):999.
22 Kupka M, Stpień K, Kulak K. Effect of hydrogen on room-tempe-rature plasticity of B2 iron aluminides[J].Scripta Materialia,2011,53(4):1209.
23 Yang Y, Hanada S. Absorption and desorption of hydrogen in Fe-40Al intermetallics[J].Scripta Metallurgica et Materialia,1995,32(11):1719.
24 Gu B, Nie Y F, Gao K W, et al. In-situ TEM observation of hydrogen-induced cracking and stress corrosion cracking for Fe3Al[J].Acta Metallurgica Sinica,1997,33(7):709(in Chinese).
谷飚,聂一凡,高克玮,等.Fe3Al氢致开裂和应力腐蚀的TEM原位观察[J].金属学报,1997,33(7):709.
25 Munroe R, Baker I. Observation of 〈001〉 dislocations and a mec-hanism for transgranular fracture on {001} in FeAl[J].Acta Metallurgica et Materialia,1991,39(5):1011.
26 Wittmann M, Wu D, Baker I, et al. The role of edge and screw dislocations on hydrogen embrittlement of Fe-40Al[J].Materials Science and Engineering:A,2001,319-321(4):352.
27 Liu C T, George E P. Environmental embrittlement in Boron-free and Boron-doped FeAl(40 at%Al) alloys[J].Scripta Metallurgica et Materialia,1990,24(7):1285.
28 Zhang Z, Sun Y, Liu G, et al. Ductility improvement of Fe3Al-based alloy with surface coating[J].Scripta Materialia,1996,35(9):1071.
29 Ren X C, Zhou Q J, Shan G B, et al. A nucleation mechanism of hydrogen blister in metals and alloys[J].Metallurgical and Materials Transactions A,2008,39(1):87.
30 Xu Z R, Mclellan R B. The thermodynamics and solubility of hydrogen in FeAl[J].Journal of Physics & Chemistry of Solids,2000,61:633.
31 Ruda M, Farkas D, Abriata J. Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys[J].Physical Review B,1996,54:9765.
32 Hanc A, Kansy J, Dercz G, et al. Point defect structure in B2-ordered Fe-Al alloys[J].Journal of Alloys and Compounds,2009,480:84.
33 Río J D, Diego N D, Jiménez J A, et al. A positron annihilation study of two Fe-Al alloys in the B2 region[J].Intermetallics,2010,18:1306.
34 Gonzalez E A, Jasen P V, Luna R, et al. The effect of interstitial hydrogen on the electronic structure of the B2 FeAl alloy[J].Physica Status Solidi B,2007,244(10):3684.
35 Jasen P V, González E A, Luna R, et al. The hydrogen effect in the electronic structure and bonding of the B2 FeAl alloy with a Fe vacancy[J].International Journal of Hydrogen Energy,2009,34(23):9591.
36 Zhang G K, Huang G Q, Hu M J, et al. Stability and clusterization hydrogen-vacancy complexes in B2-FeAl: Insight from hydrogen embrittlement[J].RSC Advances,2017,7:11094.
37 Taha A, Sofronis P. A micromechanics approach to the study of hydrogen transport and embrittlement[J].Engineering Fracture Mechanics,2001,68(6):803.
No related articles found!
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed