Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2483-2489    https://doi.org/10.11896/cldb.18080163
  材料与可持续发展(二)——材料绿色制造与加工* |
电子封装用Au-20Sn钎料研究进展
王刘珏1,薛松柏1,刘晗1,林尧伟2,陈宏能2
1.南京航空航天大学材料科学与技术学院,南京 210016
2.汕尾市索思电子封装材料有限公司,汕尾 516600
Research Progress of Au-20Sn Solder for Electronic Packaging
WANG Liujue1, XUE Songbai1, LIU Han1, LIN Yaowei2, CHEN Hongneng2
1.College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2.Shanwei Source Advanced Materials Corporation, Shanwei 516600
下载:  全 文 ( PDF ) ( 2556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Au-20Sn钎料具有优异的综合性能且适用于无钎剂钎焊,在微电子器件和光电子器件封装领域占据重要地位。近年来,国内外学者对金锡钎料的研究工作不断深入,金锡钎料制备工艺及焊点可靠性研究已成为电子封装领域的研究热点。
然而,Au-20Sn钎料在发展和应用过程中仍受到以下问题的严重制约:第一,Au-20Sn钎料铸态组织中由于存在脆性金属间化合物(IMC),难以采用常规方法加工成形;第二,钎料中贵金属金含量太高(约为80%),导致钎料价格昂贵;第三,Au-20Sn钎料在制造过程中难免会存在夹杂物,影响钎料的使用性能和连接质量;第四,有关Au-20Sn钎料的焊点可靠性研究尚未见系统报道。
Au-20Sn钎料铸态组织粗大,IMC分布不均匀,导致合金脆性较大,难以通过传统铸造轧制工艺制备出符合使用要求的Au-20Sn钎料。因此,研究者们不断优化Au-20Sn钎料的制备方法,采用熔铸增韧等工艺有效控制了Au-20Sn钎料制备过程中脆性IMC的形成和分布,大幅提高了Au-20Sn钎料的使用性能。在高可靠性电子封装及芯片封装中,电子元器件通常使用镀层提高可焊性。铜(Cu)、镍(Ni)、金(Au)是电子封装中常用的基板材料和表面金属化层,Au-20Sn钎料与镀层金属形成的焊点界面IMC是实现可靠性连接的基础。目前,有关Au-20Sn钎料与不同镀层金属之间相互作用的研究主要集中在钎焊过程中焊点界面IMC的演变及时效过程中焊点可靠性的影响机制。除了对Au-20Sn钎料制备工艺进行优化和探索不同界面反应外,不少研究者尝试对焊点钎着率和钎缝气密性等可靠性问题进行研究。通过不断优化钎焊工艺参数,制定合理的工艺规范,采用焊点钎着率和钎缝气密性作为评价大功率电子及光电子器件性能及其稳定运行的重要指标。
本文重点介绍并分析了Au-20Sn钎料的优点以及其制备的难点,阐述了Au-20Sn钎料在无钎剂封装焊点钎着率和钎缝气密性等可靠性的研究进展,详细讨论了Au-20Sn钎料与不同镀层的界面反应问题,探讨了Au-20Sn钎料研发、制备和应用过程中存在的问题及解决措施,从而为Au-20Sn钎料的生产与应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王刘珏
薛松柏
刘晗
林尧伟
陈宏能
关键词:  Au-20Sn钎料  金属间化合物  界面反应  焊点可靠性    
Abstract: Au-20Sn solder occupies an important position in the microelectronic devices and optoelectronic devices packaging industries due to its excellent comprehensive properties and fluxless packing. In recent years, the research of Au-Sn solder have been focusing on the preparation technology and the reliability of solder joints, which are the hot topic in the field of electronic packaging.
However, there are some problems in the development and application of Au-20Sn solder. Firstly, it is difficult to process by conventional me-thod because of the brittle intermetallic compounds in the coarse as-cast microstructure of Au-Sn solder. Secondly, the higher gold content always results in high costs of the solder. Thirdly, the inclusion is unavoidable during the manufacturing process. At last, the reliability of solder joints has not been reported systematically.
The coarse as-cast microstructure and inhomogeneous distribution of intermetallic compounds (IMCs) can lead to the brittleness of the solder, which is difficult to prepare Au-Sn solder by traditional casting and rolling process. Therefore, researchers continue to optimize the preparation methods of Au-Sn solder, and use casting toughening and other processes to effectively control the formation and distribution of brittle IMCs in the preparation process, greatly improving the performance of Au-Sn solder. In high reliability electronic packaging and chip packaging industries, the coatings usually can be used to improve the weldability of electronic components. Cu, Ni and Au are commonly used as substrate materials and surface metallization layers in electronic packaging. The IMCs formed between Au-Sn solder and coated metal are the basis for reliable bonding. At present, the research on the interaction between Au-Sn solder and different coated metals are mainly focused on the evolution of IMCs at the interface during soldering and the influence mechanism of solder joint reliability during aging. In addition to optimizing the preparation process and exploring different interfacial reactions of Au-Sn solder, many researchers have attempted to study the reliability of solder joints such as soldering rates and sealing properties. By continuously optimizing the soldering parameters and formulating reasonable process specifications, the soldering rates and sealing properties are used as important indexes to evaluate the performance and stable operation of high power electronic and optoelectronic devices.
This paper focuses on analysing the advantages and the difficulties in preparation technology of Au-20Sn solder, and describes the research progress of the reliability of Au-20Sn solder joints in fluxless packaging such as soldering rates and sealing properties. In addition, the interface reactions of Au-20Sn solder and various coating metals are discussed in details. At the same time, some suggestions are put forward which maybe solve the issues mentioned above, which may provide theory guide for the Au-20Sn solder.
Key words:  Au-20Sn solder    intermetallic compounds    interface reaction    reliability of solder joints
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TG425+.1  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
作者简介:  王刘珏,1992年生,南京航空航天大学材料科学与技术学院博士研究生,在薛松柏教授的指导下进行研究,目前主要研究领域为先进连接技术。
薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士生导师,享受政府特殊津贴专家。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了30多项国家、部、市课题的研究,共取得主要科研成果30余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。在国内外学术刊物上发表论文320余篇,SCI收录120余篇,EI收录160余篇,论文他引300余次,单篇他引38次。
引用本文:    
王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
WANG Liujue, XUE Songbai, LIU Han, LIN Yaowei, CHEN Hongneng. Research Progress of Au-20Sn Solder for Electronic Packaging. Materials Reports, 2019, 33(15): 2483-2489.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080163  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2483
[1] Li X J, Tian J, Dai P Q, et al. Rare Metal Materials and Engineering,2018,47(6),1860(in Chinese).
李小军,田君,戴品强,等.稀有金属材料与工程,2018,47(6),1860.
[2] Yin L M, Li D, Yao Z X, et al. Journal of Materials Science: Materials in Electronics,2018,29(14),12028.
[3] Chidambaram V, Hattel J, Hald J. Materials & Design,2010,31(10),4638.
[4] Zhao J C, Yuan Q, Sun H Y, et al. Microsystem Technologies,2018,24(9),3885.
[5] Li J L, Tan K K, Zhang Z H, et al. Microelectronics,2012,42(4),539(in Chinese).
李金龙,谈侃侃,张志红,等.微电子学,2012,42(4),539.
[6] Wei X F, Zhu X W, Wang R C. Transactions of Nonferrous Metals Society of China,2017,27(5),1199.
[7] Huang Y F, Liu W S, Ma Y Z, et al. Materials Characterization,2018,135,214.
[8] Li X X, Hu Y F, Yu S L, et al. Electronics & Packaging,2008,8(6),17(in Chinese).
李孝轩,胡永芳,禹胜林,等.电子与封装,2008,8(6),17.
[9] Yoon J W, Chun H S, Jung S B. Journal of Alloys and Compounds,2009,469(1-2),108.
[10] Liu W S, Huang Y F, Ma Y Z. Materials Review A: Review Papers,2013,27(6),1(in Chinese).
刘文胜,黄宇峰,马运柱.材料导报:综述篇,2013,27(6),1.
[11] Ciulik J, Notis M R. Journal of Alloys and Compounds,1993,191(1),71.
[12] Li L. Investigation on microstructure formation and properties of Au-20Sn alloy. Master’s Thesis, Tianjin University,China,2012(in Chinese).
黎丽.Au-20Sn合金组织形成及性能的研究.硕士学位论文,天津大学,2012.
[13] Wei X F. Preparation and related fundamental research on AuSn20 eutectic solder for electronic packing. Ph.D. Thesis, Central South University,China,2014(in Chinese).
韦小凤.电子封装用AuSn20共晶焊料的制备及其相关基础研究.博士学位论文,中南大学,2014.
[14] Yoon J W, Jung S B. Microelectronic Engineering,2007,84(11),2634.
[15] Wang Q, Choa S H, Kim W, et al. Journal of Electronic Materials,2006,35(3),425.
[16] Tollefsen Torleif André, Larsson Andreas,Neels Antonia, et al. Metallurgical & Materials Transactions B Process Metallurgy & Materials Proces-sing Science,2013,44(2),406.
[17] Yao Y, Long X, Keer L M. Applied Mechanics Reviews,2017,69(4),040802.
[18] Ma H, Suhling J C. Journal of Materials Science,2009,44(5),1141.
[19] Chen B, Ding R Z, Ming X F, et al. Electronics and Packaging,2012(11),9(in Chinese).
陈波,丁荣峥,明雪飞,等.电子与封装,2012,12(11),9.
[20] Yao L H, Wu L Q, Cai Y, et al. Electronics Process Technology,2010(5),267(in Chinese).
姚立华,吴礼群,蔡昱,等.电子工艺技术,2010(5),267.
[21] Liu S F, Chen C, Xiong J R, et al. Special Casting & Nonferrous Alloys,2017,37(9),952(in Chinese).
刘生发,陈晨,熊杰然,等.特种铸造及有色合金,2017,37(9),952.
[22] Zhu Z J. Research on manufacture and application of AuSn20 solder preform. Master’s Thesis, Huazhong University of Science and Technology,China,2009(in Chinese).
朱志君.金锡预成型焊片制备工艺与应用研究.硕士学位论文,华中科技大学,2009.
[23] 马运柱,黄宇峰,刘文胜,等.中国专利,201410085656.8,2016.
[24] 刘泽光,杨富陶,顾开源.中国专利,92102647.1,1994.
[25] Wei X F, Wang R C, Peng C Q, et al. Transactions of Materials and Heat Treatment,2012,33(6),105(in Chinese).
韦小凤,王日初,彭超群,等.材料热处理学报,2012,33(6),105.
[26] Yoon J W, Chun H S, Jung S B. Materials Science and Engineering: A,2008,473(1-2),119.
[27] Pan J L. Study on non-cyanide co-electrodeposition process and property of gold-tin eutectic alloy. Master’s Thesis, Dalian University of Technology,China,2013(in Chinese).
潘剑灵.无氰共沉积电镀Au-Sn共晶合金工艺及其性能研究.硕士学位论文,大连理工大学,2013.
[28] Vorobyova T N, Vrublevskaya O N. Surface and Coatings Technology,2010,204(8),1314.
[29] Doesburg J, Ivey D G. Materials Science and Engineering: B,2000,78(1),44.
[30] Li C J, Tao J M, Zhu X K, et al. Transactions of Materials and Heat Treatment,2010,31(4),40(in Chinese).
李才巨,陶静梅,朱心昆,等.材料热处理学报,2010,31(4),40.
[31] Xu M C. Preparation of Au-Sn alloy by mechanical alloying. Master’s Thesis, Kunming University of Science and Technology,China,2010(in Chinese).
徐孟春.机械合金化制备金锡合金.硕士学位论文,昆明理工大学,2010.
[32] 薛松柏,何鹏.微电子焊接技术,机械工业出版社,2012.
[33] Yoon J W, Chun H S, Lee H J, et al. Journal of Materials Research,2007,22(10),2817.
[34] Chung H, Chen C, Lin C, et al. Journal of Alloys and Compounds,2009,485(1-2),219.
[35] Peng J, Liu H S, Ma H B, et al. Journal of Materials Science,2018,53(12),9287.
[36] Lee B S, Lee C W, Yoon J W. Surface and Interface Analysis,2016,48(7),493.
[37] Wei X F, Zhu X W, Yang F Z, et al. Journal of Mechanical Enginee-ring,2016,52(22),84(in Chinese).
韦小凤,朱学卫,杨福增,等.机械工程学报,2016,52(22),84.
[38] Zhang W, Wang C Q, Yan B H. Rare Metal Materials and Engineering,2006,35(7),1143(in Chinese).
张威,王春青,阎勃晗.稀有金属材料与工程,2006,35(7),1143.
[39] Lai Y T, Liu C Y. Journal of Electronic Materials,2006,35(1),28.
[40] Zhang G S, Jing H Y, Xu L Y, et al. Materials for Mechanical Enginee-ring,2009(11),1(in Chinese).
张国尚,荆洪阳,徐连勇,等.机械工程材料,2009(11),1.
[41] Wan Y. The parameters of brazing process have an influence on brazing rate. Master’s Thesis, Chongqing University of Technology,China,2013(in Chinese).
万一.钎焊工艺参数对钎着率的影响.硕士学位论文,重庆理工大学,2013.
[42] Zhao Z H, Wang X T, Wang H W. Journal of Changchun University of Science & Technology,2017,40(2),78(in Chinese).
赵梓涵,王宪涛,王海卫.长春理工大学学报,2017,40(2),78.
[43] Chen J, Yao S, Luo X Y, et al. Applied Laser,2017,37(5),674(in Chinese).
成健,尧舜,罗校迎,等.应用激光,2017,37(5),674.
[44] Chen B, Ding R, Ming X, et al. Electronics and Packaging,2012(11),9(in Chinese).
陈波,丁荣峥,明雪飞,等.电子与封装,2012(11),9.
[45] Liu Y Z, Lu X. Electronics Process Technology,2011,32(5),297(in Chinese).
刘远志,卢肖.电子工艺技术,2011,32(5),297.
[46] Xu C, Xu Y Q, Yang Y J, et al. Micronanoelectronic Technology,2014(2),131(in Chinese).
胥超,徐永青,杨拥军,等.微纳电子技术,2014(2),131.
[47] Sheen M T, Ho Y H, Wang C L, et al. Journal of Electronic Materials,2005,34(10),1318.
[48] Tsai J Y, Chang C W, Ho C E, et al. Journal of Electronic Materials,2006,35(1),65.
[49] Lee B S, Ko Y H, Bang J H, et al. Microelectronics Reliability,2017,71,119.
[50] Yoon J W, Noh B I, Jung S B. Journal of Materials Science: Materials in Electronics,2011,22(1),84.
[51] Nadimpalli S P V, Spelt J K. Engineering Fracture Mechanics,2011,78(6),1169.
[52] Wittler O, Walter H, Dudek R, et al. In: Conference Record of the 2006 IEEE 8th Conference Electronics Packaging Technology. Singapore,2006,pp.297.
[1] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[4] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[5] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[6] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[7] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[8] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[9] 黄硕文, 黄春平, 吴中文, 夏春, 刘奋成, 柯黎明. 后热处理对搅拌摩擦加工制备Al-Ti复合材料组织特征的影响[J]. 材料导报, 2018, 32(22): 3908-3912.
[10] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[11] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[12] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[13] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[14] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[15] 朱宗涛, 万占东, 薛珺予. 不锈钢/铝合金异种金属激光-MIG熔钎焊工艺研究*[J]. 《材料导报》期刊社, 2017, 31(12): 52-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed