Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 61-65    https://doi.org/10.11896/j.issn.1005-023X.2017.06.013
  材料研究 |
镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响
马坤1, 2, 刘亚1, 2, 涂浩1, 2, 苏旭平1, 2, 王建华1, 2
1 常州大学江苏省材料表面科学与技术重点实验室, 常州 213164;
2 常州大学江苏省光伏科学
与工程协同创新中心, 常州 213164
Effect of Mg Content and Si on Fe-Al Reaction Layer in Solid-Liquid
Diffusion Couples of Fe/Zn-Al-Mg Alloys
MA Kun1,2, LIU Ya1,2, TU Hao1,2, SU Xuping1,2, WANG Jianhua1,2
1 Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164;

2 Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering,
Changzhou University, Changzhou 213164
下载:  全 文 ( PDF ) ( 2231KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在热浸镀锌中,铁基表面Fe-Al化合物层的形成会影响镀层的生长和质量。将Fe/(Zn-11%Al-3%Mg)和Fe/(Zn-11%Al-x%Mg-0.2%Si)扩散偶在600 ℃下进行25 min的固-液扩散实验,利用扫描电子显微镜(SEM)和能谱仪(EDS)研究了镁含量和硅对铁-锌铝镁合金固-液界面Fe-Al合金层形成的影响。结果表明,Fe/(Zn-11%Al-3%Mg)固-液扩散偶反应层由FeAl3和Fe2Al5相层组成;随着Mg含量的增加,Fe/(Zn-11%Al-x%Mg-0.2%Si)扩散偶中反应层的厚度呈现先增加后减少再增加的变化趋势,当镁含量为3%时反应层厚度最薄;Fe/(Zn-11%Al-3%Mg)扩散偶中Fe-Al反应层的平均厚度比Fe/(Zn-11%Al-3%Mg-0.2%Si)扩散偶中反应层的厚度大60 μm,证明Si元素起到抑制Fe-Al反应层形成的作用。研究结果为解释Super Dyma合金镀层中不形成明显的Fe-Al抑制层提供了实验依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马坤
刘亚
涂浩
苏旭平
王建华
关键词:  热浸镀锌  固-液扩散偶  界面反应  Fe-Al反应层    
Abstract: In hot dip galvanization, the formation of Fe-Al compound layer on steel surface affects the growth and quality of coatings. Fe/(Zn-11%Al-3%Mg) and Fe/(Zn-11%Al-x%Mg-0.2%Si) solid-liquid diffusion couples were annealed at 600 ℃ for 25 min. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were adopted to study the effect of Mg content and Si on the formation of Fe-Al reaction layer. The results showed that the reaction layer in Fe/(Zn-11%Al-3%Mg) solid-liquid diffusion couple was composed of FeAl3 and Fe2Al5 phase. With the increase of Mg content, the thickness of the reaction layer in Fe/(Zn-11%Al-x%Mg-0.2%Si) diffusion couple increased firstly, then decreased and increased finally. The thickness of reaction layer was the thinnest when magnesium content was 3%. The average thickness of Fe-Al reaction layer in Fe/(Zn-11%Al-3%Mg) diffusion couple was obviously larger than that in Fe/(Zn-11%Al-3%Mg-0.2%Si) diffusion couple, which proved that Si played a role in inhibiting the formation of Fe-Al reaction layer. The results could be used for explaining the reason that there was no obvious Fe-Al inhibition layer forming in the coating of Super Dyma alloy.
Key words:  galvanization    solid-liquid diffusion couple    interface reaction    Fe-Al reaction layer
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG111.6  
  TG113.1  
基金资助: 国家自然科学基金(51271041)
通讯作者:  王建华:男,1964年生,教授,研究方向为金属表面改性 Tel:0519-86330233,E-mail:wangjh@cczu.edu.cn   
作者简介:  马坤:男,1992年生,硕士研究生,研究方向为金属表面改性,E-mail:Free_kun@163.com
引用本文:    
马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
MA Kun, LIU Ya, TU Hao, SU Xuping, WANG Jianhua. Effect of Mg Content and Si on Fe-Al Reaction Layer in Solid-Liquid
Diffusion Couples of Fe/Zn-Al-Mg Alloys. Materials Reports, 2017, 31(6): 61-65.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.013  或          https://www.mater-rep.com/CN/Y2017/V31/I6/61
1 Morimoto Y,Honda K,Nishimura K, et al. Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet “super Dyma”[J]. Nippon Steel Technical Rep,2003,87(87):22.
2 Yu Kangcai, Li Jun, Liu Xin, et al. Microstructure of hot-dip galvanized Zn-Al-Mg alloy coating[J].J Shanghai Jiaotong University,2012,17(6):663.
3 Honda K, Ushioda K, Yamada W. Influence of si addition to the coating bath on the growth of the Al-Fe alloy layer in hot-dip Zn-Al-Mg alloy-coated steel sheets[J]. ISIJ Int,2011,51(11):1895.
4 De Bruycker E. Zn-Al-Mg alloy coatings: Thermodynamic analysis and microstructure-related properties[D]. Ghent: Ghent University,2005.
5 Li Q, Zhao Y Z, Luo Q, et al. Experimental study and phase diagram calculation in Al-Zn-Mg-Si quaternary system[J]. J Alloys Compd,2010,501(2):282.
6 Yin F C, Zhao M X, Liu Y X, et al. Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron and molten aluminum[J]. Trans Nonferrous Met Soc China,2013,23(2):556.
7 Tong Chen, Su Xuping, Li Zhi, et al. Research on hot-dipped Zn-6%Al-3%Mg alloy coatings intermetallics layer growth [J]. J Mater Eng,2013,7(1):54(in Chinese).
童晨,苏旭平,李智,等. 热浸镀Zn-6%Al-3%Mg镀层合金层生长研究[J]. 材料工程,2013,7(1):54.
8 Qian Weijiang, Gu Wengui. Inhibitory action of Si on growth of interfacial compound layer during hot-dip aluminizing[J].Acta Metall Sin,1994,30(9):403(in Chinese).
钱卫江,顾文桂. Si对热浸镀Al界面化合物层生长的限制作用[J].金属学报,1994,30(9):403.
9 Han Wei. Influence of Si on the growth kinetic of Fe2Al5 during reaction diffusion between Fe and Al [D]. Xiangtan: Xiangtan University,2009(in Chinese).
韩炜. Si对Fe-Al反应过程中Fe2Al5相生长动力学的影响[D]. 湘潭:湘潭大学,2009.
10 Jiang S M, Yue C F, Zhang Q F. Coating structure and corrosion resistance behavior of hot dip Zn-Al-Mg-Si alloy coating steel sheet[J]. Adv Mater Res,2014,2817(834):601.
11 Ueda K, Takahash A, Kubo Y. Investigation of corrosion resistance of pre-painted Zn-11%Al-3%Mg-0.2%Si alloy coated steel sheet through outdoor exposure test in Okinawa[J]. Metall Italiana,2012,104(3):13.
12 Ueda Kohei. Corrosion resistance of Zn-11%Al-3%Mg-0.2%Si alloy coated steel sheet in the marine atmospheric after long term outdoor exposure[C]//Galvatech’13, 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet. Beijing: Metallurgical Industry Press,2013:659.
13 Li Feng, Lv Jiashun, Yang Hongang, et al. The Experiment research of microstructure of hot-dip galvanized Zn11Al3Mg0.2Si alloy coating [J]. Surf Technol,2011(3):39(in Chinese).
李锋,吕家舜,杨洪刚,等. 热浸镀Zn11Al3Mg0.2Si合金镀层微观组织实验研究[J].表面技术,2011(3):39.
14 Lin Yuan, Yuan Xunhua, Yue Chongfeng, et al. Microstructure and corrosion resistance of hot dip Zn-Al-Mg coating [J]. Heat Treat Met,2014(4):39(in Chinese).
林源,袁训华,岳崇锋,等. 热镀锌铝镁镀层的组织和耐蚀性能[J]. 金属热处理,2014(4):39.
15 Hei Zhirong, Liu Jituo, Xie Yadan, et al. Effect of Al and Si on microstructure and corrosion resistance of hot dipping Zn-Al-Mg alloy coatings [J]. Chin J Nonferrous Met,2015,25(5):1250(in Chinese).
贺志荣,刘继拓,解亚丹,等. Al和Si对热浸Zn-Al-Mg合金镀层组织和耐腐蚀性的影响[J]. 中国有色金属学报,2015,25(5):1250.
16 任颂赞,等.钢铁金相图谱[M]. 上海:上海科学技术出版社,2003.
17 Wu G, Zhang J, Li Q, et al. Microstructure and thickness of 55 pct Al-Zn-1.6 pct Si-0.2 pct RE hot-dip coatings: Experiment, thermodynamic, and first-principles study[J]. Metall Mater Trans B,2012,43(1):198.
18 Phelan D, Xu B J, Dippenaar R. Formation of intermetallic phases on 55wt.%Al-Zn-Si hot dip strip[J]. Mater Sci Eng A,2006,420(1):144.
19 Liu Liantao. Study on the texture and structure of the composite interface of Fe-Al [D]. Kunming: Kunming University of Science and Technology,2008(in Chinese).
刘连涛. 钢-铝复合界面组织结构研究[D].昆明: 昆明理工大学,2008.
20 Pei Jiangbang, Wu Guangxin, Zhang Jieyu, et al. Microstructure and growth kinetics of high strength low-alloy steel with hot-dipping of 55%Al-Zn-1.6%Si (≤0.1%Ti)[J]. Chin J Process Eng,2013,13(1):139(in Chinese).
裴金榜,吴广新,张捷宇,等. 低合金高强钢热浸镀55%Al-Zn-1.6%Si(≤0.1%Ti)合金层的组织及生长动力学[J]. 过程工程学报,2013,13(1):139.
21 García F, Salinas-Rodríguez A, Nava-Vázquez E. The role of Ti ino-culation of Al-Zn-Si coating alloys on the formation of intermetallic compounds by interaction with solid steel[J]. Mater Sci Forum,2007,75(560):97.
22 Honda K, Sugiyama M, Ikematsu Y, et al. Role of TiAl3 fine precipitate in nucleation of the primary Al dendrite phase during solidification in hot-dip Zn-11%Al-3%Mg-0.2%Si coated steel sheet[J]. Mater Trans,2011,52(1):90.
[1] 汪丹丹, 朱泓羽, 魏坤霞, 魏伟, 田无边, 孙正明. Ag/Cr2AlC电接触材料的微观组织与耐电弧侵蚀性能[J]. 材料导报, 2024, 38(21): 23080215-5.
[2] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[3] 穆晓彪, 潘涛, 熊玮, 柴希阳, 罗小兵, 柴锋. 热处理温度对铝-铝-钢与铝-钛-钢爆炸复合板界面组织与性能的影响[J]. 材料导报, 2023, 37(19): 22030278-6.
[4] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[5] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[6] 张可欣, 李庚伟, 杨少延, 魏洁. n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究[J]. 材料导报, 2022, 36(21): 21050131-6.
[7] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[8] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[9] 王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
[10] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[11] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[12] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[13] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[14] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[15] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed