Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23080215-5    https://doi.org/10.11896/cldb.23080215
  金属与金属基复合材料 |
Ag/Cr2AlC电接触材料的微观组织与耐电弧侵蚀性能
汪丹丹1,*, 朱泓羽1, 魏坤霞1, 魏伟1, 田无边2, 孙正明2
1 常州大学材料科学与工程学院,江苏 常州 213164
2 东南大学材料科学与工程学院,南京 211189
Microstructure and Arc Erosion Resistance Properties of Ag/Cr2AlC Electrical Contact Materials
WANG Dandan1,*, ZHU Hongyu1, WEI Kunxia1, WEI Wei1, TIAN Wubian2, SUN Zhengming2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164,Jiangsu, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China
下载:  全 文 ( PDF ) ( 6167KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ag基电接触材料被广泛应用于低压电路控制器件中,在电路中起承载、分断、闭合电流的作用。Cr2AlC作为Mn+1AXn相的典型代表之一,兼具金属和陶瓷的优良性能,有望成为Ag基电接触材料中优良的增强相。本项目采用粉末冶金法制备Ag/Cr2AlC复合材料,表征其微观组织,探究其界面反应,并研究材料的物理性能和耐电弧侵蚀性能。结果表明,由于Al原子的弱结合,经烧结,Ag与Cr2AlC发生明显的界面反应,生成Ag3Al和Cr-C化合物。相比于生坯,Ag/Cr2AlC熟坯的密度和硬度下降,分别为9.04 g/cm3和(78.9±5.5) HV,且由于界面反应的发生,材料的电阻率为(141.9±0.4)×10-9 Ω·m。电弧侵蚀结果表明,Ag/Cr2AlC材料经电弧侵蚀生成Al2O3,Ag发生熔融喷溅,产生明显凸起,Ag/Cr2AlC的质量损失为6.25%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪丹丹
朱泓羽
魏坤霞
魏伟
田无边
孙正明
关键词:  电接触材料  MAX相  Ag/Cr2AlC  界面反应  耐电弧侵蚀    
Abstract: Ag-based electrical contact materials are widely used in low-voltage circuit control devices, serving the role of carrying, breaking, and closing electrical currents in circuits. Cr2AlC, as a representative of the Mn+1AXn phases, possesses a combination of the excellent properties of both metals and ceramics, making it a promising reinforcing phase in Ag-based electrical contact materials. In this work, Ag/Cr2AlC composites were prepared using powder metallurgy method. The microstructure including interfacial reactions, the physical properties and arc erosion resistance were investigated. The results indicated that due to the weak bonding of Al atoms, significant interfacial reactions occurred between Ag and Cr2AlC after sintering, resulting in the formation of Ag3Al and Cr-C compounds. In comparison to the green bodies, the density and hardness of the sintered Ag/Cr2AlC were reduced, i.e., 9.04 g/cm3 and (78.9±5.5)HV, respectively. However, due to the occurrence of interfacial reactions, the electrical resistivity of the Ag/Cr2AlC substantially increased to (141.9±0.4)×10-9 Ω·m. Arc erosion tests revealed that the mass loss of the Ag/Cr2AlC was 6.25%, and the main arc erosion product was Al2O3. Meanwhile, Ag undergone melting and sputtering, resulting in a noticeable protrusions.
Key words:  electrical contact materials    MAX phases    Ag/Cr2AlC    interfacial reaction    arc erosion resistance
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(52302057);江苏省自然科学基金青年项目(BK20220627);常州市应用基础研究项目(CJ20210114);江苏省高等学校自然科学研究面上项目(21KJB430001)
通讯作者:  *汪丹丹,常州大学材料科学与工程学院讲师、硕士研究生导师。2020年于东南大学材料科学与工程专业,同年到常州大学工作至今。目前主要从事MAX相、MAX相增强金属基复合材料、电接触材料、镁合金等方面的研究工作。发表论文16余篇,包括Corrosion Science,Materials Science & Engineering A, Journal of Alloys & Compounds等。ddwang@cczu.edu.cn   
引用本文:    
汪丹丹, 朱泓羽, 魏坤霞, 魏伟, 田无边, 孙正明. Ag/Cr2AlC电接触材料的微观组织与耐电弧侵蚀性能[J]. 材料导报, 2024, 38(21): 23080215-5.
WANG Dandan, ZHU Hongyu, WEI Kunxia, WEI Wei, TIAN Wubian, SUN Zhengming. Microstructure and Arc Erosion Resistance Properties of Ag/Cr2AlC Electrical Contact Materials. Materials Reports, 2024, 38(21): 23080215-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080215  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23080215
1 Li G, Yang T, Ma Y, et al. Ceramics International, 2020, 46(4),4897.
2 Romanov D, Moskovskii S, Konovalov S, et al. Journal of Materials Research and Technology, 2019, 8(6), 5515.
3 Li H, Wang X, Hu Z, et al. Vacuum, 2020, 175, 109290.
4 Kesim M T, Yu H, Sun Y, et al. Corrosion Science, 2018, 135, 12.
5 Kang X, Xie X, Zhang L. Wear, 2020, 460-461, 203458.
6 Chen Y L, Yang C F, Yeh J W, et al. Metallurgical and Materials Tran-sactions a-Physical Metallurgy and Materials Science, 2005, 36A(9), 2441.
7 Wang J, Duan C, Chen S, et al. Journal of Materials Engineering and Performance, DOI.org/10.1007/s11665-023-08300-x.
8 Wu C, Yuan M, Wu Q, et al. Journal of Alloys and Compounds, 2020, 826, 154146.
9 Sun Z. International Materials Reviews, 2011, 56(3), 143.
10 Yao Y W, Yang F Y, Zhao S, et al. Materials Reports, 2022, 36(23), 66.
姚亿文, 杨飞跃, 赵爽, 等.材料导报, 2022, 36(23), 66.
11 Mesquita G J, Ferreira N M, Reis R M S, et al. Journal of the European Ceramic Society, 2023, 43(14),5894.
12 Zhu X Y, Ding Z N, Ma G Z, et al. Materials Reports, 2022,36(7),75.
朱咸勇, 丁振宇, 马国政, 等.材料导报, 2022,36(7),75.
13 Tian W, Wang P, Zhang G, et al. Scripta Materialia, 2006, 54(5), 841.
14 Lin Z, Zhou Y, Li M, et al. Zeitschrift für Metallkunde, 2005, 96, 291.
15 Wang Q M, Mykhaylonka R, Flores Renteria A, et al. Corrosion Science, 2010, 52(11), 3793.
16 Zhang P, Ngai T L, Xie H, et al. Journal of Physics D: Applied Physics, 2013, 46(39), 395202.
17 Hu S, Li S, Li H, et al. Journal of Alloys and Compounds, 2018, 740, 77.
18 Tian W, Wang P, Kan Y, et al. Journal of Materials Science, 2008, 43(8), 2785.
19 Wang D, Zhu H, Zheng M, et al. Journal of Alloys and Compounds, 2023, 961, 170870.
20 Rong M Z, Feng J X, Yang W, et al. Low Voltage Apparatus,1998(1), 13.
荣命哲, 冯建兴, 杨武.低压电器, 1998(1), 13.
21 Wang D, Tian W, Ding J, et al. Journal of Alloys and Compounds, 2020, 820, 153136.
[1] 孙国栋, 康凯, 解静, 贾研, 郑斌, 吕龙飞, 田清来, 唐宇星. Ti3SiC2陶瓷材料制备方法研究进展[J]. 材料导报, 2024, 38(18): 23020262-11.
[2] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[3] 穆晓彪, 潘涛, 熊玮, 柴希阳, 罗小兵, 柴锋. 热处理温度对铝-铝-钢与铝-钛-钢爆炸复合板界面组织与性能的影响[J]. 材料导报, 2023, 37(19): 22030278-6.
[4] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[5] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[6] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[7] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[8] 张可欣, 李庚伟, 杨少延, 魏洁. n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究[J]. 材料导报, 2022, 36(21): 21050131-6.
[9] 高丽娜, 陈文革, 李树丰. Ti3AlC2陶瓷粉末的研究现状及进展[J]. 材料导报, 2022, 36(20): 20090196-11.
[10] 杨瑞, 刘绍宏, 朱海澄, 孙旭东, 刘满门, 崔浩, 陈家林. 电接触材料电弧侵蚀研究进展[J]. 材料导报, 2022, 36(17): 20070113-7.
[11] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[12] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[13] 王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
[14] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[15] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed