Comparison Study on the Interfacial Reaction and Intermetallic Interdiffusion Behavior of Au/Zr and Au/Ti Metal Electrodes on n-GaN
ZHANG Kexin1, LI Gengwei1,*, YANG Shaoyan2,3,*, WEI Jie4
1 School of Science, China University of Geoscience (Beijing), Beijing 100083, China 2 University of Chinese Academy of Sciences,Materials and Optoelectronics Research Center, Beijing 100049, China 3 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 4 Nanjing Youtian Metal Technology Co., Ltd., Nanjing 211164, China
Abstract: Electrode contact is a very important issue in making semiconductor devices. The ohmic contact generated by metal electrode and semiconductor is the guarantee of device service with high efficiency and low power consumption, which directly affects the performance of devices. Previous studies of ohmic contact mainly focused on the selection of metal electrode system and treatment conditions to look for the scheme with the lowest specific contact resistance. This work breaks through the shackles and discusses the feasibility of metal from the perspective of the formation mechanism of ohmic contact. The contact mechanism of Au(300 nm)/Zr(30 nm)/n-GaN and Au(300 nm)/Ti(30 nm)/n-GaN structure was studied under the conditions of annealing at 650 ℃ for 60 s and 850 ℃ for 30 s. UV lithography was adopted to define the dot transmission line model, and metal electrode samples were prepared on GaN with magnetron sputtering equipment. The counter-diffusion and interfacial reaction of electrode samples were analyzed. The results indicate that compared with Au/Ti/n-GaN, the Au/Zr/n-GaN samples are less affected by temperature, and the Zr-N compound generated by interfacial solid-state reaction has superior thermal stability, which can help the device work more stably at high temperature and high pressure; less Ga alloy phase is produced when Zr comes into contact with gallium nitride, which helps the device to transmit carriers with tunneling mechanism; the interface pores of Au/Zr/n-GaN samples are smaller and the interface reaction with gallium nitride is moderate; the surface of Au/Zr/n-GaN sample is more flat, which is suitable for the work with high power and high current. In addition, it can be comparatively concluded that the performance of the device will be affected by the preparation and purification of metal, adding barrier metal, the method of making metal electrode, the stability of barrier metal, the interface reaction degree between metal and gallium nitride, and the surface roughness of electrode. Higher performance requirements of the device can be achieved by using Zr instead of Ti as n-type GaN ohmic contact electrode, which is a metal material with a broad application prospect, and is of great help to the R&D and improvement of GaN devices.
作者简介: 张可欣,2019年7月毕业于天津师范大学,获得理学学士学位。现为中国地质大学(北京)数理学院硕士研究生,在李庚伟副教授的指导下进行研究。目前主要从事光学与光电子技术领域的研究。 李庚伟,中国地质大学(北京)数理学院副教授、硕士研究生导师。1989年于锦州师范学院物理系物理专业本科毕业,2001年于北京师范大学光学专业硕士毕业后到中国地质大学(北京)工作至今,2013年于中国中国地质大学(北京)获得固体地球物理学博士学位。主要从事光学、薄膜材料及电磁场理论研究。发表论文40余篇,包括Materials Research Express、《物理学报》、OptoElectronics Letters等。 杨少延,中国科学院半导体研究所研究员、博士研究生导师,中国科学院大学岗位教授。1996年于哈尔滨师范大学物理系获得物理教育专业理学学士学位,1999年于吉林大学材料科学与工程系获得凝聚态物理专业理学硕士学位,2006年于中国科学院半导体研究所获得材料物理与化学专业工学博士学位。1999年于中国科学院半导体研究所参加工作至今,主要从事宽禁带和超宽禁带半导体材料、器件及物理研究。承担各类科研项目20多项,发表论文学术论文40多篇,获得授权发明专利13项。
引用本文:
张可欣, 李庚伟, 杨少延, 魏洁. n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究[J]. 材料导报, 2022, 36(21): 21050131-6.
ZHANG Kexin, LI Gengwei, YANG Shaoyan, WEI Jie. Comparison Study on the Interfacial Reaction and Intermetallic Interdiffusion Behavior of Au/Zr and Au/Ti Metal Electrodes on n-GaN. Materials Reports, 2022, 36(21): 21050131-6.
1 Feezell D, Kelchner K, Denbaars S P, et al. Acta Materialia, 2013, 61 (3), 945. 2 Koike M, Shibata N, Kato H, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2), 271. 3 Flack T J, Pushpakaran B N, Bayne S B. Journal of Electronic Materials, 2016, 45(6), 2673. 4 Pearton S, Ren F, Zhang A, et al. Materials Science and Engineering R: Reports, 2000, 30(3-6), 55. 5 Motayed A, Jah M, Sharma A, et al. Journal of Vacuum Science & Technology B, 2004, 22, 663. 6 Deger C, Born E, Angerer H, et al. Applied Physics Letters, 1998, 72(19), 2400. 7 Shu P, Huang Z C, Goldberg R, et al. Applied Physics Letters, 1995, 67(19), 2825. 8 Pimputkar S, Speck J S, Denbaars S P, et al. Nature Photonics, 2009, 3(4), 180. 9 Ruvimov S, Liliental W Z, Washburn J, et al. Applied Physics Letters, 1996, 69(11), 1556. 10 Wang D F, Shi W F, Lu C, et al. Journal of Applied Physics, 2001, 89(11), 6214. 11 Selvanathan D, Zhou L, Kumar V, et al. Physica Status Solidi (A), 2002, 194(2), 583. 12 Iucolano F, Roccaforte F, Alberti A, et al. Journal of applied physics, 2006, 100(12), 123706. 13 Zhang T, Pu T, Xie T, et al. Chinese Physics B, 2018, 27(7), 664. 14 Yao J N, Lin Y C, Chuang Y L, et al. In: 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits. IEEE, 2015, pp. 419. 15 Singh K, Chauhan A, Mathew M, et al. Applied Physics A: Materials Science & Processing, 2019, 125(1), 24. 16 Shostachenko S A, Porokhonko Y A, Zakhatchenko R V, et al. In: Journal of Physics Conference Series. IOP Publishing, 2017, pp. 012072. 17 Van Daele B, Van Tendeloo G, Ruythooren W, et al. Applied Physics Letters, 2005, 87(6), 1908. 18 Greco G, Iucolano F, Roccaforte F. Applied Surface Science, 2016, 383, 324. 19 Gong R, Wang J, Liu S, et al. Applied Physics Letters, 2010, 97(6), 062115. 20 France R, Xu T, Chen P, et al. Applied Physics Letters, 2007, 90(6), 062115. 21 He T L, Wei H Y, Li C M, et al. Atca Physica Sinica, 2019, (20), 6(in Chinese). 何天立, 魏鸿源, 李成明, 等. 物理学报, 2019, (20), 6. 22 Park J S, Han J, Seong T Y. Journal of Alloys and Compounds, 2015, 652, 167. 23 Mohammad S N. Journal of Applied Physics, 2004, 95(12), 7940. 24 Liu Y, Bera M K, Kyaw L M, et al. Advanced Materials Research, 2012, 430-432, 530. 25 Kurtin S, Mcgill T C, Mead C A. Physical Review Letters, 1969, 22(26), 1433. 26 Michaelson H B. Journal of Applied Physics, 1977, 48(11), 4729. 27 Wolter S D, Luther B P, Mohney S E, et al. Electrochemical and Solid-State Letters, 1999, 2(3), 151. 28 Schmitz A C, Ping A T, Asif K M, et al. Journal of Electronic Materials, 1998, 27(4), 255.