Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21050131-6    https://doi.org/10.11896/cldb.21050131
  金属与金属基复合材料 |
n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究
张可欣1, 李庚伟1,*, 杨少延2,3,*, 魏洁4
1 中国地质大学(北京)数理学院,北京 100083
2 中国科学院大学材料与光电研究中心,北京 100049
3 中国科学院半导体研究所,半导体材料科学重点实验室,北京 100083
4 南京佑天金属科技有限公司,南京 211164
Comparison Study on the Interfacial Reaction and Intermetallic Interdiffusion Behavior of Au/Zr and Au/Ti Metal Electrodes on n-GaN
ZHANG Kexin1, LI Gengwei1,*, YANG Shaoyan2,3,*, WEI Jie4
1 School of Science, China University of Geoscience (Beijing), Beijing 100083, China
2 University of Chinese Academy of Sciences,Materials and Optoelectronics Research Center, Beijing 100049, China
3 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 Nanjing Youtian Metal Technology Co., Ltd., Nanjing 211164, China
下载:  全 文 ( PDF ) ( 7210KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电极接触是制作半导体器件中非常重要的问题。金属电极与半导体形成的欧姆接触是器件高效率、低功耗服务的保障,直接影响了器件性能的优劣。前人关于欧姆接触的研究主要集中在金属电极体系和处理条件的选择,寻求比接触电阻率最低的方案。而本工作突破桎梏,从欧姆接触的形成机制出发讨论金属欧姆接触的可行性,研究了低温(650 ℃)退火60 s和高温(850 ℃)退火30 s条件下,Au(300 nm)/Zr(30 nm)/n-GaN和Au(300 nm)/Ti(30 nm)/n-GaN结构的接触机理。采用紫外光刻法定义圆点型传输线模型,并且利用磁控溅射设备在GaN上制备金属电极样品,分析了电极样品的互扩散行为及界面反应情况。研究结果表明:与Au/Ti/n-GaN相比,Au/Zr/n-GaN样品受温度影响小,界面固相反应生成的Zr-N化合物热稳定性更优异,可以帮助器件在高温高压下更加稳定地工作;Zr与氮化镓接触时产生的Ga合金相更少,有利于器件利用隧道机制传输载流子;Au/Zr/n-GaN样品具有更小的界面孔隙,与氮化镓的界面反应适中;Au/Zr/n-GaN样品具有更平整的表面,适合大功率高电流工作。此外,根据本工作的对比研究可以得出:金属的制备与提纯、阻挡层金属的添加、制作金属电极的方法、势垒层金属的稳定性、金属与氮化镓的界面反应程度以及电极的表面粗糙度都会影响器件性能。Zr替代Ti作为n型GaN欧姆接触电极可以实现器件更高的性能要求,是一种具有广阔应用前景的金属材料,对于GaN器件的研发和改善有很大帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张可欣
李庚伟
杨少延
魏洁
关键词:  n型GaN  Au/Zr欧姆接触电极  互扩散行为  界面反应    
Abstract: Electrode contact is a very important issue in making semiconductor devices. The ohmic contact generated by metal electrode and semiconductor is the guarantee of device service with high efficiency and low power consumption, which directly affects the performance of devices. Previous studies of ohmic contact mainly focused on the selection of metal electrode system and treatment conditions to look for the scheme with the lowest specific contact resistance. This work breaks through the shackles and discusses the feasibility of metal from the perspective of the formation mechanism of ohmic contact. The contact mechanism of Au(300 nm)/Zr(30 nm)/n-GaN and Au(300 nm)/Ti(30 nm)/n-GaN structure was studied under the conditions of annealing at 650 ℃ for 60 s and 850 ℃ for 30 s. UV lithography was adopted to define the dot transmission line model, and metal electrode samples were prepared on GaN with magnetron sputtering equipment. The counter-diffusion and interfacial reaction of electrode samples were analyzed. The results indicate that compared with Au/Ti/n-GaN, the Au/Zr/n-GaN samples are less affected by temperature, and the Zr-N compound generated by interfacial solid-state reaction has superior thermal stability, which can help the device work more stably at high temperature and high pressure; less Ga alloy phase is produced when Zr comes into contact with gallium nitride, which helps the device to transmit carriers with tunneling mechanism; the interface pores of Au/Zr/n-GaN samples are smaller and the interface reaction with gallium nitride is moderate; the surface of Au/Zr/n-GaN sample is more flat, which is suitable for the work with high power and high current. In addition, it can be comparatively concluded that the performance of the device will be affected by the preparation and purification of metal, adding barrier metal, the method of making metal electrode, the stability of barrier metal, the interface reaction degree between metal and gallium nitride, and the surface roughness of electrode. Higher performance requirements of the device can be achieved by using Zr instead of Ti as n-type GaN ohmic contact electrode, which is a metal material with a broad application prospect, and is of great help to the R&D and improvement of GaN devices.
Key words:  n-type GaN    Au/Zr ohmic contact electrode    mutual diffusion behavior    interface reaction
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  O472+.4  
基金资助: 国家自然科学基金 (61774147);南京佑天金属科技有限公司技术开发项目(Y8H1020M00)
通讯作者:  * ligw@cugb.edu.cn;sh-yyang@semi.ac.cn   
作者简介:  张可欣,2019年7月毕业于天津师范大学,获得理学学士学位。现为中国地质大学(北京)数理学院硕士研究生,在李庚伟副教授的指导下进行研究。目前主要从事光学与光电子技术领域的研究。
李庚伟,中国地质大学(北京)数理学院副教授、硕士研究生导师。1989年于锦州师范学院物理系物理专业本科毕业,2001年于北京师范大学光学专业硕士毕业后到中国地质大学(北京)工作至今,2013年于中国中国地质大学(北京)获得固体地球物理学博士学位。主要从事光学、薄膜材料及电磁场理论研究。发表论文40余篇,包括Materials Research Express、《物理学报》、OptoElectronics Letters等。
杨少延,中国科学院半导体研究所研究员、博士研究生导师,中国科学院大学岗位教授。1996年于哈尔滨师范大学物理系获得物理教育专业理学学士学位,1999年于吉林大学材料科学与工程系获得凝聚态物理专业理学硕士学位,2006年于中国科学院半导体研究所获得材料物理与化学专业工学博士学位。1999年于中国科学院半导体研究所参加工作至今,主要从事宽禁带和超宽禁带半导体材料、器件及物理研究。承担各类科研项目20多项,发表论文学术论文40多篇,获得授权发明专利13项。
引用本文:    
张可欣, 李庚伟, 杨少延, 魏洁. n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究[J]. 材料导报, 2022, 36(21): 21050131-6.
ZHANG Kexin, LI Gengwei, YANG Shaoyan, WEI Jie. Comparison Study on the Interfacial Reaction and Intermetallic Interdiffusion Behavior of Au/Zr and Au/Ti Metal Electrodes on n-GaN. Materials Reports, 2022, 36(21): 21050131-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050131  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21050131
1 Feezell D, Kelchner K, Denbaars S P, et al. Acta Materialia, 2013, 61 (3), 945.
2 Koike M, Shibata N, Kato H, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2), 271.
3 Flack T J, Pushpakaran B N, Bayne S B. Journal of Electronic Materials, 2016, 45(6), 2673.
4 Pearton S, Ren F, Zhang A, et al. Materials Science and Engineering R: Reports, 2000, 30(3-6), 55.
5 Motayed A, Jah M, Sharma A, et al. Journal of Vacuum Science & Technology B, 2004, 22, 663.
6 Deger C, Born E, Angerer H, et al. Applied Physics Letters, 1998, 72(19), 2400.
7 Shu P, Huang Z C, Goldberg R, et al. Applied Physics Letters, 1995, 67(19), 2825.
8 Pimputkar S, Speck J S, Denbaars S P, et al. Nature Photonics, 2009, 3(4), 180.
9 Ruvimov S, Liliental W Z, Washburn J, et al. Applied Physics Letters, 1996, 69(11), 1556.
10 Wang D F, Shi W F, Lu C, et al. Journal of Applied Physics, 2001, 89(11), 6214.
11 Selvanathan D, Zhou L, Kumar V, et al. Physica Status Solidi (A), 2002, 194(2), 583.
12 Iucolano F, Roccaforte F, Alberti A, et al. Journal of applied physics, 2006, 100(12), 123706.
13 Zhang T, Pu T, Xie T, et al. Chinese Physics B, 2018, 27(7), 664.
14 Yao J N, Lin Y C, Chuang Y L, et al. In: 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits. IEEE, 2015, pp. 419.
15 Singh K, Chauhan A, Mathew M, et al. Applied Physics A: Materials Science & Processing, 2019, 125(1), 24.
16 Shostachenko S A, Porokhonko Y A, Zakhatchenko R V, et al. In: Journal of Physics Conference Series. IOP Publishing, 2017, pp. 012072.
17 Van Daele B, Van Tendeloo G, Ruythooren W, et al. Applied Physics Letters, 2005, 87(6), 1908.
18 Greco G, Iucolano F, Roccaforte F. Applied Surface Science, 2016, 383, 324.
19 Gong R, Wang J, Liu S, et al. Applied Physics Letters, 2010, 97(6), 062115.
20 France R, Xu T, Chen P, et al. Applied Physics Letters, 2007, 90(6), 062115.
21 He T L, Wei H Y, Li C M, et al. Atca Physica Sinica, 2019, (20), 6(in Chinese).
何天立, 魏鸿源, 李成明, 等. 物理学报, 2019, (20), 6.
22 Park J S, Han J, Seong T Y. Journal of Alloys and Compounds, 2015, 652, 167.
23 Mohammad S N. Journal of Applied Physics, 2004, 95(12), 7940.
24 Liu Y, Bera M K, Kyaw L M, et al. Advanced Materials Research, 2012, 430-432, 530.
25 Kurtin S, Mcgill T C, Mead C A. Physical Review Letters, 1969, 22(26), 1433.
26 Michaelson H B. Journal of Applied Physics, 1977, 48(11), 4729.
27 Wolter S D, Luther B P, Mohney S E, et al. Electrochemical and Solid-State Letters, 1999, 2(3), 151.
28 Schmitz A C, Ping A T, Asif K M, et al. Journal of Electronic Materials, 1998, 27(4), 255.
[1] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[2] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[3] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[4] 王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
[5] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[6] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[7] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[8] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[9] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[10] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[11] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed