Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21221-21227    https://doi.org/10.11896/cldb.20070273
  金属与金属基复合材料 |
铁铝金属间化合物及其涂层制备的研究进展
王优1, 邓楠1, 佟振峰2, 周张健1
1 北京科技大学材料科学与工程学院,北京 100083
2 华北电力大学核科学与工程学院,北京 102206
Research Progress on Preparation of Fe-Al Intermetallic Compounds and Coatings
WANG You1, DENG Nan1, TONG Zhenfeng2, ZHOU Zhangjian1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 School of Nuclear Science and Engineering, North China Electric Powder University, Beijing 102206, China
下载:  全 文 ( PDF ) ( 4863KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁铝金属间化合物凭借其较高的高温抗蠕变能力、良好的耐磨性、抗高温氧化和硫化等优点得到了广泛关注,但其具有B2、DO3和A2三种晶体结构,晶型难以准确控制,且DO3结构在室温下脆性高,给制备和加工带来困难。这些缺点极大地限制了铁铝金属间化合物在工业中的应用。
本文总结了包括传统熔铸法和粉末冶金法等常见的铁铝金属间化合物块体材料的制备方法,并重点介绍了近年来发展起来的增材制造法和冷喷涂、热喷涂等涂层制备方法。
同时,针对涂层材料中铁铝两相的反应控制这一关键问题,本文聚焦如何预判铁铝涂层界面反应中原位生成的铁铝金属间化合物的化合反应发生顺序的研究现状,分析对比了两种预判方法——相图法和焓变值计算法。其中,相图只能表征热平衡状态下的相分布,各相区域代表该温度、成分条件下所能获得的最终产物,局限性大,较难准确预测实际热处理过程中铁铝金属间化合物的出现顺序和种类。通过从热力学角度进行焓变值计算,结合Kirchhoff公式,可计算并绘制常见铁铝金属间化合物的焓变值-温度曲线,进而分析铁铝金属间化合物的反应发生顺序。焓变值计算法的理论结果与已报道的实验结果具有较高的一致性,弥补了相图法的不足,对制备特定的铁铝金属间化合物具有十分重要的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王优
邓楠
佟振峰
周张健
关键词:  铁铝金属间化合物  铁铝涂层  界面反应  焓变值计算法    
Abstract: Fe-Al intermetallic compounds have been widely focused due to their high creep resistance, good wear resistance, and high-temperature anti-oxidation and vulcanization resistance. However, these compounds contain three grain structures, B2, DO3 and A2, which are difficult to control them accurately. Also, high brittleness at room temperature of DO3 brings difficulties in preparation and processing. These shortcomings greatly limit the application of Fe-Al intermetallic compounds.
This paper summarized several common preparation methods of Fe-Al intermetallic compound block materials including traditional casting me-thod and powder metallurgy method. As well as the additive manufacturing technology, some coatings' preparation methods, for example, cold spraying, hot spray and some other methods, which have been developed in recent years, were introduced as important points.
At the same time, referring to the key question of reaction control between Fe and Al in coatings, this paper focused on how to predict the sequence of the synthesis reaction of Fe-Al intermetallic compounds, which were generated in the original position of the interface reaction of Fe-Al coatings and proposed two prediction methods—phase diagram method and enthalpy change calculation method. Among them, the phase diagram can only represents the phase distribution in the heat balance state, and each phase region barely represents final products that are obtained under specific temperature and composition, thus the dynamic process of the occurrence of Fe-Al intermetallic compounds cannot be judged. Therefore, this paper calculated the enthalpy change value from the perspective of thermodynamics, combined with Kirchhoff formula, calculated, and plotted the enthalpy-temperature curve of common Fe-Al intermetallic compounds, and analyzed the reaction sequence of Fe-Al intermetallic compounds. The theoretical and experimental results of the enthalpy calculation method were highly compatible, thus could modify the phase diagram method, which is of great significance for the preparation of specific Fe-Al intermetallic compounds.
Key words:  Fe-Al intermetallic compounds    Fe-Al coating    interface reaction    enthalpy change calculating
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TG113.12  
基金资助: 国家自然科学基金(U1967212);国家重点研发计划(2018YFE0306100)
通讯作者:  zhouzj@mater.ustb.edu.cn   
作者简介:  王优,2019年6月毕业于北京科技大学,获得工学学士学位。现为北京科技大学材料与工程学院无机非金属系硕士研究生,在周张健教授的指导下进行研究。目前主要研究领域为Fe-Al涂层制备及界面反应。
周张健,北京科技大学材料科学与工程学院教授、博士研究生导师。2007年7月在北京科技大学取得博士学位,2009年在德国于利希研究中心进行博士后研究工作。主要科研项目有科技部ITER计划课题“聚变堆用ODS钢的批量制备技术及关键服役性能研究”,国际原子能机构(IAEA)国际合作计划(CRP)等。在相关领域发表论文100余篇,包括Journal of Alloy and Compounds、Materials Science and Engineering、Journal of Nuclear Materials、Corrosion Science等。
引用本文:    
王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
WANG You, DENG Nan, TONG Zhenfeng, ZHOU Zhangjian. Research Progress on Preparation of Fe-Al Intermetallic Compounds and Coatings. Materials Reports, 2021, 35(21): 21221-21227.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070273  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21221
1 Wang M, Zhou Y. Hot Working Technology, 2018, 47(6), 45(in Chinese).
王猛,周勇. 热加工工艺, 2018, 47(6), 45.
2 Hu Z Z. Research on Structure and Properties of FeAl Intermetallic Compounds. Ph.D. Thesis, Harbin Institute of Technology,China,2010 (in Chinese).
胡增智. 铁铝金属间化合物组织和性能的研究. 博士学位论文, 哈尔滨工业大学, 2010.
3 Tang Y. Research on and modification mechanism of Fe-Al coating reaction by thermal spraying. Ph.D. Thesis, Shenyang University of Technology, China,2017 (in Chinese).
唐勇. 热喷涂铝-铁涂层反应改性机理及工艺研究. 博士学位论文, 沈阳工业大学, 2017.
4 Mehrer H, Eggersmann M, Gude A, et al.Materials Science & Enginee-ring A, 1997, 239-240, 889.
5 Liu Y N, Sun Z, Cai X P, et al.Transactions of Nonferrous Metals Society of China, 2018, 28(6), 1141.
6 Ma Y Q, Wang H Y, Liu L M. Chinese Journal of Lasers, 2019, 46(8), 1 (in Chinese).
马雨晴,王红阳,刘黎明. 中国激光,2019, 46(8), 1.
7 Panda D, Kumar L, Alam S N.Materials Today: Proceedings, 2015, 2(4-5), 3565.
8 Liu W J, Wang Y, Ge H B, et al.Transactions of Nonferrous Metals Society of China, 2018, 28(10), 2028.
9 Lechermann F, Fähnle M, Sanche J M. Intermetallics, 2005, 13(10), 1096.
10 Cheng C, Bai Y P, Li J P, et al. Journal of Xi'an Technological University, 2019, 39(3), 289 (in Chinese).
成超,白亚平,李建平,等. 西安工业大学学报,2019, 39(3), 289.
11 Varin R A, Bystrzycki J, Calka A.Intermetallics, 1999, 7(8), 919.
12 Wang Y, Vecchio K S.Materials Science and Engineering: A, 2016, 649(Jan.1), 325.
13 Silva B L, Garcia A, Spinelli J E. Materials Letters, 2012, 89, 291.
14 Yang F L. In: Proceedings of the 2nd China Tritium Science and Techno-logy Exchange Conference. Chengdu, China,2017, pp. 82 (in Chinese).
杨飞龙.第二届中国氚科学与技术学术交流会论文集. 成都, 2017, pp. 82.
15 Jiang Z Z. In: Abstractions of the 10th national corrosion congress. Nanchang, China,2019, pp. 171 (in Chinese).
姜志忠.第十届全国腐蚀大会摘要集. 南昌, 2019, pp. 171.
16 Gedevanishvili S, Deevi S C. Materials Science and Engineering, 2002, 325(1-2), 163.
17 Vityaz P A, Talako T L, Letsko A I, et al. Russian Journal of Non-Ferrous Metals, 2019, 60(2), 207.
18 Senderowski C, Bojar Z. Surface and Coatings Technology, 2008, 202(15), 3538.
19 Peska M, Karczewski K, Rzeszotarska M, et al. Materials (Basel), 2020, 13(3), 1.
20 Wang H, Harrington T, Zhu C, et al.Acta Materialia, 2019, 175, 445.
21 Duan B, Shen T, Wang D.Powder Technology, 2019, 344, 169.
22 Ikeda O, Ohnuma I, Kainuma R, et al.Intermetallics, 2001, 9(9), 755.
23 Chen M J, Hu X J, Lv W, et al. Welding Research Paper, 2019(7), 10(in Chinese).
陈满骄,胡新军,吕威,等.焊接试验研究, 2019(7), 10.
24 Burkhardt U, Yu G, Ellner M.Acta Cyrastalliographic Section B, 1994, 50(3), 313.
25 Zienert T, Amirkhanyan L, Seidel J, et al. Intermetallics, 2016, 77, 14.
26 Scharf S, Riedel E, Stein N, et al.Journal of Materials Processing Technology, 2017, 248, 31.
27 Gao H Y, He Y H, Shen P Z. Materials Reports, 2008, 22(7), 68 (in Chinese).
高海燕,贺跃辉,沈培智.材料导报, 2008, 22(7), 68.
28 Sikka V K, Wikening D, Liebetrau J, et al. Materials Science and Engineering: A, 1998, 258(1-2), 229.
29 Song H X, Wu Y X, Tang C A, et al.Tsinghua Science and Technology, 2009, 14(3), 300.
30 Morris M A, Dodge A, Morris D G.Nanostructural Materials, 1999, 11(7), 873.
31 Enayati M H, Salehi M. Journal of Materials Science, 2015, 40(15), 3933.
32 Attaran M. Business Horizons, 2017, 60(5), 677.
33 Xu S, Chen L Z, Cao S G, et al.Materials Reports A:Review Papers, 2019, 33(1), 78 (in Chinese).
徐帅,陈灵芝,曹书光,等.材料导报:综述篇,2019, 33(1), 78.
34 Song B, Dong S J, Coddet P, et al. Surface and Coatings Technology, 2012, 206(22), 4704.
35 Zhou Y, Wang M, Zhao F, et al. Surface Technology, 2017, 46(10), 156 (in Chinese).
周勇,王猛,赵飞,等. 表面技术, 2017, 46(10), 156.
36 Xu B S, Li C J, Liu S C, et al. Chinese Surface Engineering, 1998, 38(1), 3 (in Chinese).
徐滨士,李长久,刘世参,等. 中国表面工程, 1998, 38(1), 3.
37 Meng F J, Xu B S, Zhu S, et al.Journal of Center South University of Technology, 2005, 12(2), 221.
38 Tian H L, Wei S C, Chen Y X, et al. Rare Metal Materials And Engineering, 2014, 43(1), 135 (in Chinese).
田浩亮,魏世丞,陈永雄,等. 稀有金属材料与工程, 2014, 43(1), 135.
39 Suresh K, Selvarajan V, Mohai I. Vacuum, 2008, 82(5), 482.
40 Wang H T, Ji G C, Li C J. In: International Conference on Mechanic Automation & Control Engineering. Inner Mongolia, China,2011.
41 Schmidt T, Gartner F, Assadi H, et al. Acta Materialia, 2006, 54(3), 729.
42 Arabgol Z, Vidaller M V, Assadi H, et al.Acta Materialia, 2017, 127, 287.
43 Cinca N, List A, Gartner F, et al.Surface and Coatings Technology, 2015, 268, 99.
44 Cinca N, Drehmann R, Dietrich D, et al. Surface and Coatings Technology, 2019, 380, 1.
45 Deng N, Dong H, Che H Y, et al. Surface Technology, 2020, 49(3), 57 (in Chinese).
邓楠,董浩,车红艳,等. 表面技术, 2020, 49(3), 57.
46 Drehmann R, Grund T, Lampke T, et al.Journal of Thermal Spray Technology, 2018, 27(3), 446.
47 Wei D, Xin W. In: International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China,2010, pp. 665.
48 Cheng W J, Wang C J. Surface and Coatings Technology, 2009, 204(6-7), 824.
49 Wang Y, Zhao X N, Dang X A, et al. Journal of Materials Engineering, 2019,47(11), 148 (in Chinese).
王瑶,赵雪妮,党新安,等. 材料工程, 2019, 47(11), 148.
50 Huang C. Study of diffusion related properties of Fe-Al system. Ph.D. Thesis, Guangxi University, China,2015.
黄超.Fe-Al体系扩散相关性质的研究.博士学位论文,广西大学,2015.
51 Hatcher R D, Zeller R, Dederichs P H. Physical Review B, 1979, 19(10), 5083.
52 Polteaev G M, Starostenkov M D.Physics of the Solid State, 2010, 52(6), 1146.
53 Debiaggi S B, Decorte P M, Monti A M.Physica States Solidi(b), 1996, 195(1), 37.
54 Mantina M, Wang Y, Arroyave R.Physical Review Letters, 2008, 100(21), 215901.
55 Polishchuk S. Surface and Coatings Technology, 2016, 291, 406.
[1] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[2] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[3] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[6] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[7] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[8] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[9] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed