Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7145-7154    https://doi.org/10.11896/cldb.19100056
  金属与金属基复合材料 |
合金元素对Fe/Al界面反应影响的研究进展
张先满, 陈再雨, 罗洪峰
海南大学机电工程学院,海口 570228
Influences of Alloying Elements on the Interfacial Reaction of Fe/Al: a Review
ZHANG Xianman, CHEN Zaiyu, LUO Hongfeng
Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 5838KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Fe/Al界面反应涉及轻量化设计中的钢/铝焊接、铝合金铸造过程中铝熔体对模具钢的腐蚀及提高耐腐蚀、耐磨损性能的热浸镀铝涂层的制备等工业领域,在此过程中由于Fe、Al原子的互扩散而在界面上生成脆性的Fe-Al金属间化合物(IMC)层,该IMC层对上述的各种性能起着决定性作用。因此,如何根据最终的性能要求来控制该界面反应具有十分重要的科学意义。诸多文献从钢/铝焊接、钢热浸镀铝等方面研究了Fe/Al界面反应,并取得了丰硕的成果。但由于该界面反应大多为非平衡条件下进行的反应扩散过程,界面处生成的Fe-Al IMC厚度很薄且脆性较大。同时,合金元素及其交互作用会对这一界面反应产生复杂影响。具体表现在:Si易在IMC晶界处富集,对IMC的生长起抑制作用,Zn则可加速Fe/Al界面反应,但Si、Zn的影响与其存在形式有关;Fe-Cr-B铸钢热浸镀铝时会在反应界面上生成周期性层片结构(PLS),而Cr、Zn等合金元素会对生成PLS的界面反应产生重大影响,其中,Fe-Cr-B铸钢中的Cr含量是基础,只有Cr含量位于特定范围内,该界面反应才会生成PLS;Al熔体中的Zn会导致界面反应由Fe/Al转变为Fe/Zn,发生该转变时Al-Zn熔体中Al的临界含量为0.3%(质量分数,下同)。本文从纯Fe/Al固液界面反应入手,阐述并讨论合金元素对这一界面反应生成IMC的类型、形貌及厚度的影响及其机理。结合已有的研究结果,分析了Fe-Cr-B铸钢热浸镀铝时界面组织结构的演变规律,最后,对Fe/Al界面反应的研究方向进行了展望,旨在为相关工程应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张先满
陈再雨
罗洪峰
关键词:  界面反应  Fe/Al  合金元素  周期性层片结构    
Abstract: The interfacial reaction of Fe/Al involves steel/Al welding in regard of lightweight design, corrosion of the die by molten aluminum in the cast processing of aluminum alloys, and preparation of hot-dipping coating for improvement of the corrosion resistance and wear resistance. In all the processing, brittle Fe-Al intermetallic compound (IMC) layer is formed on the interface due to the interdiffusion of Fe and Al, which determines these properties above. Therefore, how to control this interfacial reaction according to the final performance is of great practical significance. Many literatures have studied the Fe/Al interfacial reaction from the aspects of steel/aluminum welding and hot dip aluminizing of steel, and achieved fruitful results. However, most of the interfacial reactions of Fe/Al are the reaction-diffusion processes under non-equilibrium conditions. The Fe-Al IMC formed at the interface is very thin and brittle. Besides, alloy elements and their interaction will have a significant impact on the interfacial reactions. Alloying elements, such as Si and Zn, have complex effects on the interfacial reaction. In general, Si resists this interfacial reaction, while Zn accelerates it. But the influence of Si and Zn is related to the existing form. Periodic layered structure (PLS) will be formed at the reaction interface when the Fe-Cr-B cast steel is hot-dip aluminizing, and the alloying elements such as Cr and Zn have a significant impact on this interfacial reaction. The Cr content in Fe-Cr-B cast steel plays a key role in the formation of PLS, only when the Cr content is among the critical range can the PLS be formed during the interfacial reaction. The critical content of Al in Zn-Al melt was 0.3wt% when the interfacial reaction of Fe/Al transformed to Fe/Zn. This paper focused on the influences of alloying elements on the type, morphology and thickness of the IMCs formed during the interfacial reaction of Fe/Al and the discussion of its mechanism. Combined with the previous research results of the author, the evolution of interfacial structures of Fe-Cr-B cast steels during hot-dip aluminizing were analyzed. Finally, the future research and development directions in the interfacial reaction of Fe/Al were prospected in order to provide theoretical guidance for the related engineering applications.
Key words:  interfacial reaction    Fe/Al    alloying element    periodic layered structure
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TG142.7  
基金资助: 国家自然科学基金项目(51701053;42066003);海南省自然科学基金项目(420RC522;517076);中央引导地方科技发展专项资金项目(ZY2018HN09-6)
作者简介:  张先满,海南大学机电工程学院副教授、硕士研究生导师。2015年12月在华南理工大学机械与汽车工程学院材料加工工程专业取得博士学位。主要从事金属材料及其耐蚀性研究。近年来,在Corrosion Science等期刊上发表SCI论文多篇。
引用本文:    
张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
ZHANG Xianman, CHEN Zaiyu, LUO Hongfeng. Influences of Alloying Elements on the Interfacial Reaction of Fe/Al: a Review. Materials Reports, 2021, 35(7): 7145-7154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100056  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7145
1 Springer H, Aparicio-Fernandez R, Duarte M J, et al. Acta Materialia, 2015, 96, 47.
2 Tan C, Zang C, Xia H, et al. Journal of Manufacturing Processes, 2018, 34, 251.
3 Wang H, Qin G, Geng P, et al. Journal of Manufacturing Processes, 2020, 49, 18.
4 Chen N, Wang M, Wang H P, et al. Journal of Manufacturing Processes, 2018, 34, 424.
5 Mohammed A, Marshall M B, Lewis R. Wear, 2015, 332-333, 1215.
6 Fang X, Wang Y, Zhang Y, et al. Corrosion Science, 2016, 111, 362.
7 Song J, Denouden T, Han Q. Metallurgical and Materials Transactions A, 2012, 43, 415.
8 Bobzin K, Brögelmann T, Brugnara R H, et al. Surface and Coatings Technology, 2015, 284, 222.
9 Terek P, Kovačević L, Miletić A, et al. Wear, 2016, 356-357, 122.
10 Li X, Zhang D, Liu Z, et al. Nature, 2015, 527, 441.
11 Hou B, Li X, Ma X, et al. NPJ Materials Degradation, 2017, 1, 4.
12 Jiang W, Fan Z, Li G, et al. Journal of Alloys and Compounds, 2016, 688, 742.
13 Springer H, Kostka A, dos Santos J F, et al. Materials Science and Engineering: A, 2011, 528, 4630.
14 Su Y, Hua X, Wu Y, et al. Materials & Design, 2015, 78, 1.
15 Han S, Li H, Wang S, et al. International Journal of Hydrogen Energy, 2010, 35(7), 2689.
16 de Rincón O, Rincón A, Sánchez M, et al. Construction and Building Materials, 2009, 23, 1465.
17 Burris M L. Material evaluation of liquid metal corrosion in Zn-Al hot-dip coating baths. Ph.D. Thesis, West Virginia University, USA, 2000.
18 Hong K M, Shin Y C. Journal of Materials Processing Technology, 2017, 245, 46.
19 Cheng W J, Wang C J. Surface and Coatings Technology, 2009, 204(6-7), 824.
20 Tanaka Y, Kajihara M. Journal of Materials Science, 2010, 45, 5676.
21 Takata N, Nishimoto M, Kobayashi S, et al. Intermetallics, 2015, 67, 1.
22 Rezaei H, Akbarpour M R, Shahverdi H R. JOM, 2015, 67, 1443.
23 Kim J H, Kim S Y, Kang C Y. Surface and Coatings Technology, 2014, 240, 387.
24 Cui L, Wei Z, Ma B, et al. Journal of Manufacturing Processes, 2020, 50, 561.
25 Chen X, Huang Q, Yan Z, et al. Journal of Nuclear Materials, 2013, 442, 5597.
26 Shi Z, Cao J, Han F. Journal of Nuclear Materials, 2014, 447, 77.
27 Danzo I I, Houbaert Y, Verbeken, K. Surface and Coatings Technology, 2014, 251, 15.
28 Huilgol P, Rajendra Udupa K, Udaya Bhat K. Surface and Coatings Technology, 2019, 375, 544.
29 Chen S, Yang D, Zhang M, et al. Metallurgical and Materials Transactions A, 2016, 47, 5088.
30 Chen S, Yang D, Yang J, et al. Journal of Alloys and Compounds, 2018, 739, 184.
31 Huilgol P, Rajendra Udupa K, Udaya Bhat K. Surface and Coatings Technology, 2018, 348, 22.
32 Ding Z, Hu Q, Lu W, et al. Materials Characterization, 2018, 136, 157.
33 Rong J, Kang Z, Chen S, et al. Materials Characterization, 2017, 132, 413.
34 van der Rest C, Jacques P J, Simar A. Scripta Materialia, 2014, 77, 25.
35 Huang Y, Wan L, Si X, et al. Metallurgical and Materials Transactions A, 2018, 50, 295.
36 Dong H, Yang J, Li Y, et al. Journal of Manufacturing Processes, 2020, 51, 142.
37 Dong H G, Hu W J, Zhang X C. Transactions of Nonferrous Metals Society of China, 2013, 23, 1583.
38 Deng S, Yuan R, Tang X, et al. Materials and Design, 2020, 188, 108489.
39 Dangi B, Brown T W, Kulkarni K N. Journal of Alloys and Compounds, 2018, 769, 777.
40 Lemmens B, Springer H, Peeters M, et al. Materials Science and Engineering: A, 2018, 710, 385.
41 Selverian J H, Marder A R, Notis M R. Metallurgical and Materials Transactions A, 1989, 20, 543.
42 Cheng W J, Wang C J. Intermetallics, 2011, 19, 1455.
43 Yin F, Zhao M, Liu Y, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(2), 556.
44 Hou X, Yang H, Zhao Y, et al. Materials Letters, 2004, 58(27-28), 3424.
45 Xia H, Zhao X, Tan C, et al. Journal of Materials Processing Technology, 2018, 258, 9.
46 Awan G H, Hasan F U. Materials Science and Engineering: A, 2008, 472(1-2), 157.
47 Kwon S C, Lee J Y. Canadian Metallurgical Quarterly, 1981, 20(3), 351.
48 Song J L, Lin S B, Yang C L, et al. Journal of Alloys and Compounds, 2009, 488, 217.
49 Shah L H, Ishak M. Materials and Manufacturing Processes, 2014, 29, 928.
50 Wang T, Zhang Y, Li X, et al. Vacuum, 2017, 141, 281.
51 Yuan X H, Zhang Q F. Acta Metallurgica Sinica, 2017, 53(11), 1495(in Chinese).
袁训华, 张启富. 金属学报, 2017, 53(11), 1495.
52 Windmann M, Röttger A, Kügler H, et al. Journal of Materials Proces-sing Technology, 2015, 217, 88.
53 Springer H, Kostka A, Payton E J, et al. Acta Materialia, 2011, 59(4), 1586.
54 Lemmens B, Springer H, Duarte M J, et al. Materials Characterization, 2016, 120, 268.
55 Lin M B, Wang C J. Surface and Coatings Technology, 2010, 205(5), 1220.
56 Lou D C, Akselen O M, Onsoien M I, et al. Surface and Coatings Technology, 2006, 200(18-19), 5282.
57 Wang C J, Chen S M. Surface and Coatings Technology, 2006, 200, 6601.
58 Lin M B, Wang C J, Volinsky A A. Surface and Coatings Technology, 2011, 206, 1595.
59 Yürektürk Y, Baydoğan M. Surface and Coatings Technology, 2018, 347, 142.
60 Danzo I I, Verbeken K, Houbaert Y. Thin Solid Films, 2011, 520, 1638.
61 Klaver T P C, Madsen G K H, Drautz R. Intermetallics, 2012, 31, 137.
62 Min T, Gao Y, Huang X, et al. International Journal of Heat and Mass Transfer, 2018, 127, 394.
63 Marder A R. Progress in Materials Science, 2000, 45, 191.
64 Liu X, Barbero E, Xu J, et al. Metallurgical and Materials Transactions A, 2005, 36, 2049.
65 Yang H L, Zhang S G, Hong J Y, et al. Chinese Journal of Materials Research, 2014, 28(1), 23(in Chinese).
杨洪林, 张深根, 洪继要, 等. 材料研究学报, 2014, 28(1), 23.
66 Yokoi H, Takata N, Suzuki A, et al. Intermetallics, 2019, 109, 74.
67 Springer H, Szczepaniak A, Raabe D. Acta Materialia, 2015, 96, 203.
68 Dong H, Hu W, Duan Y, et al. Journal of Materials Processing Techno-logy, 2012, 212, 458.
69 Yang J, Li Y L, Zhang H, et al. Materials Science and Engineering A, 2015, 645, 323.
70 Yang J, Yu Z, Li Y, et al. Welding in the World, 2018, 62, 427.
71 Yang J, Xue S, Xue P, et al. Materials and Design, 2014, 64, 110.
72 Yang J, Yu Z S, Li Y L, et al. Journal of Materials Engineering and Performance, 2018, 27, 4107.
73 Elrefaey A, Takahashi M, Ikeuchi K. Quarterly Journal of the Japan Welding Society, 2005, 23(2), 186.
74 Dong H, Wang P, Hao X, et al. Materials Letters, 2018, 228, 407.
75 Ma S Q, Xing J D, Yi D W, et al. Acta Materialia, 2016, 115, 392
76 Wang Y, Xing J D, Ma S Q, et al. Corrosion Science, 2016, 112, 25
77 Wang Y, Xing J D , Ma S Q, et al. Corrosion Science, 2015, 98, 240
78 Wang Y, Xing J D, Ma S Q, et al. Journal of Materials Engineering and Performance, 2015, 24(6), 2444
79 Ma S Q, Xing J D, Fu H G, et al. Materials Chemistry Physics, 2012, 132, 977
80 Ma S Q, Xing J D, Fu H G, et al. Corrosion. Science, 2011, 53, 2826
81 Ma S Q, Xing J D, Yi D W, et al. Surface and Coatings Technology, 2011, 205, 4902
82 Zhang X, Chen W, Luo H, et al. Corrosion Science, 2017, 125, 20.
83 Zhang X, Chen W, Luo H, et al. Scripta Materialia, 2017, 130, 288.
84 Chen Y C, Qi L, Zhang Y G, et al. Acta Metallurgica Sinica, 2005, 41(3), 235(in Chinese).
陈永翀, 齐鲁, 张永刚, 等. 金属学报, 2005, 41(3), 235.
85 Abenojar J, Velasco F, Martinez M A. Journal of Solid State Chemistry, 2006, 179, 2787.
86 Zhang X, Chen W, Luo H, et al. International Journal of Materials Research, 2019, 110(3), 202.
87 Zhang X, Chen W, Luo H, et al. Corrosion Science, 2019, 158,108098
88 Zhang H M, Dai F Z, Xiang H M, et al. Journal of Materials Science & Technology, 2019, 35,1593
89 Zhang X M, Luo H F. Tropical Agricultural Engineering, 2018, 42(2), 49(in Chinese).
张先满, 罗洪峰. 热带农业工程, 2018, 42(2), 49.
90 Chen Y C, Li Z H, Qi L, et al. Acta Metallurgica Sinica, 2006, 42(3), 225(in Chinese).
陈永翀, 黎振华, 齐鲁, 等. 金属学报, 2006, 42(3), 225.
91 Glasbrenner H, Nold E, Voss Z. Journal of Nuclear Materials, 1997, 249, 39.
92 Akdeniz M V, Mekhrabov A O. Acta Materialia, 1998, 46(4), 1185.
93 Dangi B, Brown T W, Kulkarni K N. Journal of Alloys and Compounds, 2018, 769, 777.
94 Azimaee H, Sarfaraz M, Mirjalili M, et al. Surface and Coatings Technology, 2019, 357, 483.
95 Barbier F, Manuelli D, Bouche K. Scripta Materialia, 1997, 36(4), 425.
96 Qin R, Satonaka S, Iwamoto C. Materials and Design, 2009, 30, 3686.
97 Zhang X, Li X, Chen W. Surface and Interface Analysis, 2015, 47(6), 648.
98 Cheng W J, Wang C J. Applied Surface Science, 2013, 277, 139.
99 Xu G, Wang K, Dong X, et al. Metallurgical and Materials Transactions A, 50, 4665.
100 Takata N,Nishimoto M,Kobayashi S, et al. Intermetallics,2014,54,136
101 Yousaf M, Iqbal J, Ajmal M. Materials Characterization, 2011, 62, 517.
102 Furuya H S, Sato Y T, Sato Y S, et al. Metallurgical and Materials Transactions A, 2018, 49(2), 527.103 Liu W, Gu Q, Liu B, et al. Materials Characterization, 2018, 145, 135.
104 Wu G, Zhang J, Li Q, et al. Metallurgical and Materials Transactions B, 2012, 43, 198.
105 Yang J, Xue S, Xue P, et al. Materials Science and Engineering A, 2016, 651, 425.
[1] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[2] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[3] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[4] 杨晓萌, 安子冰, 陈艳辉. 高熵合金抗氧化性能研究现状及展望[J]. 材料导报, 2019, 33(Z2): 348-355.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[7] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[8] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[9] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[10] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[11] 邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
[12] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[13] 王星星,彭 进,崔大田,薛 鹏,李 红,胡安明,孙国元. 银基钎料在制造业中的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1477-1485.
[14] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[15] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed