Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3913-3918    https://doi.org/10.11896/j.issn.1005-023X.2018.22.013
  金属与金属基复合材料 |
Mn、Fe含量对3003铝合金铸锭均匀化行为的影响
薛喜丽1,2, 陈鑫1,2, 李龙1,2, 周德敬1,2
1 银邦金属复合材料股份有限公司,无锡 214145;
2 江苏省金属层状复合材料重点实验室,无锡 214145
Effect of Fe and Mn Content on the Homogenization Behaviorof DC-cast 3003 Alloy
XUE Xili1,2, CHEN Xin1,2, LI Long1,2, ZHOU Dejing1,2
1 Yinbang Clad Material Co., Ltd., Wuxi 214145;
2 Jiangsu Key Laboratory for Clad Materials, Wuxi 214145
下载:  全 文 ( PDF ) ( 5570KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过电导率测试、扫描电子显微镜等观察分析,研究了不同Mn、Fe含量对3003合金铸锭和均匀化组织的影响。3003合金铸锭中有明显的波纹状Mn偏析,晶界处有粗大的α-Al(Fe,Mn)Si或Al6(Fe,Mn)初生相。Fe含量由0.12%(质量分数)升高至0.30%,铸锭平均晶粒尺寸由257 μm减小为108 μm,初生相面积分数由1.28%升高至3.75%;Mn含量越高,合金电导率值越低。均匀化升温阶段,析出相主要受形核和长大过程控制,并伴随较高温度下析出相的部分回溶;600 ℃保温阶段,析出相以Ostwald熟化和原子长程扩散两种机制发生粗化,尺寸不断增大,数量减少;合金均匀化晶界附近有无析出带形成。合金Mn含量由1.15%升高至1.60%,析出相回溶温度由500 ℃升高至550 ℃,600 ℃保温12 h完成后,析出相尺寸也由149.0 nm升高至342.5 nm;高Fe低Mn(0.30%Fe,1.15%Mn)合金晶内析出相分布均匀,而低Fe高Mn(0.12%Fe,1.60%Mn)合金晶内析出相呈不均匀分布,晶粒心部及枝晶干处贫Mn区析出相数量较少。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛喜丽
陈鑫
李龙
周德敬
关键词:  3003铝合金  合金元素  均匀化  析出相  微观组织    
Abstract: The ingot and homogenization microstructure of 3003 with various Mn, Fe content were investigated by electrical conductivity measurement and scanning electron microscopy. There were obvious Mn concentration in 3003 ingot and coarse primary particles, like α-Al(Fe,Mn)Si or Al6(Fe,Mn), around grain boundaries. When the Fe content of alloy increased from 0.12% (mass fraction) to 0.3%, the average grain size decreased from 257 μm to 108 μm, and the area fraction of primary particles rose from 1.28% to 3.75%. The alloy with higher Mn content exhibited lower electrical conductivity. During homogeneous heating stage, precipitation phase is mainly controlled by nucleation and growth process, which could be partially dissolved at higher temperature. During homogenization at 600 ℃, the precipitates were coarsened by Ostwald ripening process and long distance diffusion of manganese with enlargement in sized and reduction in quantity. There was precipitation free zone formed near the grain boundary during homogenization. With the increase of Mn content from 1.15% to 1.6%, the dissolution temperature of precipitates rose from 500 ℃ to 550 ℃. After 600 ℃ heat preservation for 12 h, a size increase from 149.0 nm to 342.5 nm of precipitates could be observed. The alloy with high Fe content and low Mn content (0.3% Fe, 1.15% Mn) showed uniform precipitation distribution in grains, while the alloy with low Fe content and high Mn content (0.12% Fe, 1.6% Mn) featured nonuniform precipitation distribution in grains. And there was small amount of precipitation in Mn-depleted areas like grain core and dendrite trunk.
Key words:  3003 aluminum alloy    alloy elements    homogenization    dispersoids    microstructure
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TG146.21  
  TG166.3  
基金资助: 江苏省科技成果转化专项资金项目(BA2015079);无锡市科技发展资金项目(CZE02H1504);重点国别及机构产业技术合作项目(BZ2016004);江苏省基础研究计划(BK20161151)
作者简介:  薛喜丽:女,1990年生,硕士,助理工程师,主要从事金属层状复合材料技术的开发 E-mail:xuexilicsu@163.com
引用本文:    
薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
XUE Xili, CHEN Xin, LI Long, ZHOU Dejing. Effect of Fe and Mn Content on the Homogenization Behaviorof DC-cast 3003 Alloy. Materials Reports, 2018, 32(22): 3913-3918.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.013  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3913
1 Yucel B. Impact of homogenization on recrystallization of a supersa-turated Al-Mn alloy[J].Scripta Materialia,2009,60(1):5.
2 Liu W C, Radhakrishnan B. Recrystallization behavior of a supersa-turated Al-Mn alloy[J].Materials Letters,2010,64(16):1829.
3 Zhang X M, Wu W X, Jian X, et al. Precipitation behavior of AA3003 aluminium alloy during annealing[J].The Chinese Journal of Nonferrous Metals,2005,15(5):675(in Chinese).
张新明,吴文祥,蹇雄,等.退火过程中AA3003铝合金的析出行为[J].中国有色金属学报,2005,15(5):675.
4 Lv D, Han Y, Ge Y Y, et al. The effect of cold rolling deformation and annealing temperature on the microstructure and properties of 3003 aluminum alloy foil[J].Light Alloy Fabrication Technology,2015,13(1):33(in Chinese).
吕丹,韩颖,革义勇,等.冷轧变形量及退火温度对3003铝合金箔组织性能的影响[J].轻合金加工技术,2015,13(1):33.
5 De Haan, Van Rijkom, Sontgerath. The precipitation behavior of high-purity Al-Mn alloys[J].Materials Science Forum,1996,217-222:765.
6 Zhang Y H. Microstructural evolution during homogenization and its effect on rolling and annealing of AA3104 aluminum alloy[D].Chongqing:Chongqing University,2012(in Chinese).
张永皞.AA3104铝合金均匀化过程中微观组织演变及其对轧制和退火的影响研究[D].重庆:重庆大学,2012.
7 Li Y J, Arnberg L. Precipitation of dispersoids in DC-cast AA3103 alloy during heat treatment[J].Tms Light Metals,2013,3:1021.
8 Hirasawa H. Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases[J].Scripta Metallurgica,1975,9(9):955.
9 Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys[J].Materials Science and Engineering A,2000,283(1-2):144.
10 Muggerud A M F, Mrtsell E A, Li Y J, et al. Dispersoid strengt-hening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures[J].Materials Science and Engineering A,2013,567(4):21.
11 Liu K, Chen X G. Development of Al-Mn-Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening[J].Mate-rials and Design,2015,84:340.
12 Li Y J, Amberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization[J].Acta Materialia.2003,51:3415.
13 Hu G Q, Li R P, Liu H W, et al. Precipitation and recrystallization of 3003 cold-rolled strip during homogenization annealing[J].Foundry Technology,2011,32(10):1410(in Chinese).
胡冠奇,李荣平,刘宏伟,等.3003冷轧板均匀化退火过程中的析出和再结晶[J].铸造技术,2011,32(10):1410.
14 Kou S Z, Xu L Z, Ma Y J. Effect of annealing temperature on microstructure and properties of 3003 aluminium alloy sheet[J].Material & Heat Treatment, 2008,37(4):55(in Chinese).
寇生中,徐丽珠,马英杰.退火温度对冷轧态3003铝合金组织性能的影响[J].材料热处理技术,2008,37(4):55.
15 Wang C J, Jin Q L, Zhou R, et al. Grain refinement and mechanism of Mg-3Al alloy with Fe element addition[J].Rare Metal Materials and Engineering,2012(S2):266(in Chinese).
王春建,金青林,周荣,等.Fe元素对Mg-3Al合金的晶粒细化与机理[J].稀有金属材料与工程,2012(S2):266.
16 Zhu S R, Fu P H, Hu X Y, et al. Developments of grain refinement in Mg-Al based alloys[J].Foundry Technology,2014,35(1):13(in Chinese).
朱守茹,付彭怀,胡小禹,等.Mg-Al合金晶粒细化研究进展[J].铸造技术,2014,35(1):13.
17 Li Y J, Arnberg L. Solidification structure of DC-cast AA3003 alloy and its influence on homogenization[J].Aluminum,2002,78(10):834.
18 Altenpohl D. Aluminium and aluminium legierungen[M]. Berlin: Springer Verlag 256 Heidelberg,1965:1.
19 Li Y J, Arnberg L. Precipitation of dispersoids in DC-cast 3003 alloy[J].Materials Science Forum,2002,396-402:1021.
20 Zhang X M, Li F Q, Tang J G, et al. Dissolution and precipitation behavior of 3104 aluminum alloy during homogenization[J].Journal of Central South University (Science and Technology),2009,40(4):909(in Chinese).
张新明,李飞庆,唐建国,等.3104铝合金铸锭均匀化过程中的溶解析出行为[J].中南大学学报(自然科学版),2009,40(4):909.
21 余永宁.材料科学基础[M].北京:高等教育出版社,2012:594.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[5] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[6] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[7] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[10] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[11] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[12] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[13] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[14] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[15] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed