Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 175-182    https://doi.org/10.11896/cldb.201901021
  材料与可持续发展(二)——材料绿色制造与加工* |
硬质合金深冷处理研究进展
蔡惠坤1,2, 翁泽钜1,2, 顾开选2, 王凯凯2, 郑建朋2,3, 王俊杰2,3
1 厦门大学航空航天学院,厦门 361005
2 中国科学院低温工程学重点实验室(理化技术研究所),北京 100190
3 中国科学院大学,北京 100049
Advances in Deep Cryogenic Treatment of Cemented Carbide
CAI Huikun1,2, WENG Zeju1,2, GU Kaixuan2,, WANG Kaikai2, ZHENG Jianpeng2,3, WANG Junjie2,3
1 School of Aerospace Engineering, Xiamen University, Xiamen 361005
2 CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190
3 University of Chinese Academy of Sciences, Beijing 100049
下载:  全 文 ( PDF ) ( 1941KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硬质合金自1923年问世以来,人们主要通过改进其烧结工艺、制备超细WC-Co复合粉末以及表面强化等方法来不断优化它的性能。然而,由于上述方法存在设备复杂、制备成本高、技术难度大等问题,在一定程度上制约了我国硬质合金产业的转型升级。深冷处理作为一种低能耗、无污染、操作便捷的新型材料改性技术,能够有效提高材料的力学性能、耐磨性、尺寸稳定性、耐腐蚀性以及导电/导热性等多种性能,并在多种材料的产业化方面得到了成熟的应用。因此,将深冷处理用于优化硬质合金的性能,能够有效避免传统改性方法的不足,为高效、低成本地改善硬质合金性能提供了新的工艺路线。
   然而,由于硬质合金的深冷处理研究起步较晚,因此其深冷处理工艺和改性机理两方面依然面临诸多问题。近年来,人们在实验室研究了硬质合金经深冷处理后各方面性能的变化,同时对深冷处理工艺参数与宏观性能变化的影响规律,以及宏观性能发生变化的微观机制开展了深入的研究,并取得了一定的成果。
   大量试验表明,深冷处理能够显著改善硬质合金的抗弯强度、耐磨性和切削性能,可有效延长硬质合金工具的使用寿命,而对其硬度和韧性影响不大。硬质合金性能的改善效果与深冷处理工艺参数密切相关,较低的深冷处理温度与较长的保温时间有利于其性能的提高,但是硬质合金性能并不随深冷处理温度的降低和保温时间的延长而呈线性变化。一般而言,对于特定成分的硬质合金,存在最佳的深冷处理工艺参数。深冷处理对硬质合金服役性能的强化机制主要是黏结相Co的马氏体相变、η相的弥散析出以及材料表面残余应力状态的改变等方面。
   本文归纳了硬质合金深冷处理的研究进展,并结合本团队的研究工作,分别介绍了深冷处理对硬质合金的力学性能、服役性能、微观组织、残余应力等方面的影响,分析了深冷处理工艺参数对硬质合金的性能的影响规律,探索了微观组织、残余应力与性能之间的相互关系及作用机理。本文基于目前硬质合金深冷处理的研究现状及当前研究中存在的不足,对其未来的研究方向与产业化前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡惠坤
翁泽钜
顾开选
王凯凯
郑建朋
王俊杰
关键词:  深冷处理  硬质合金  力学性能  耐磨性  微观组织  残余应力    
Abstract: Since the advent of cemented carbide in 1923, the properties of cemented carbide have been continuously optimized by improving its sintering process, preparing ultrafine WC-Co composite powders, and strengthening its surface. Nevertheless, these methods suffer from complicated equipment, high manufacturing cost and high technical difficulty, which block the transformation and upgrading of the cemented carbide industry in China to a certain extent. Cryogenic treatment, as a novel material modification technology with low energy consumption, no pollution and conve-nient operation, can effectively improve the mechanical properties, wear resistance, dimensional stability, corrosion resistance, conductive pro-perty and thermal conductivity of the material. It has played a crucial role in industrialization of a variety of materials. Accordingly, cryogenic treatment is suitable for optimizing the performance of cemented carbide, which can effectively avoid the deficiency of conventional modification met-hod, and provides a new process route for enhancing the performance of the cemented carbide with high efficiency and low cost.
Unfortunately, the research on cryogenic treatment of cemented carbide started late in China. There are still many problems in the cryogenic treatment process and modification mechanism. In recent years, great efforts have been put in the research on the property variations of cemented carbide after cryogenic treatment in laboratory, the influence laws of the cryogenic treatment process parameters on performance variations, as well as the microscopic mechanisms of changes in macroscopic properties, and fruitful achievements have been made.
Numerous research results have shown that cryogenic treatment can significantly improve the bending strength, wear resistance and cutting performance of cemented carbide, and effectively prolong the service life of cemented carbide tools, while exerts little effect on its hardness and toughness. The improved effect of the cemented carbide performance is closely related to the process parameters of cryogenic treatment. A lower cryogenic temperature and a longer holding duration are beneficial for the improvement of performance, yet no linear variations of the cemented carbide performance occur with the decreasing temperature or the extension of soaking time. Generally speaking, there is an optimal cryogenic process for cemented carbide with specific composition. The strengthening mechanism of cryogenic treatment for the service performance of cemented carbide mainly lies in the martensitic transformation of Co phase, the dispersion and precipitation of η phase, and the change of the resi-dual stress state on surface.
This review summarizes the research progress of cryogenic treatment on cemented carbide. Taking the research work of our team as reference, the influences of cryogenic treatment on the mechanical properties, service performance, microstructure and residual stress of cemented carbide are introduced. The impact of cryogenic treatment process parameters on the properties, and the mechanism between properties and microstructure are also analyzed. Based on the current research status of cryogenic treatment and the relative deficiencies, the future research direction and industrialization prospects are put forward.
Key words:  deep cryogenic treatment    cemented carbide    mechanical properties    wear resistance    microstructure    residual stress
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TG135.5  
基金资助: 福建省自然科学基金(2018D0018);福建省工业科技重大专项(2016HZ0001-9);低温工程学重点实验室开放课题(CRYO201708);中国科学院青年创新促进会(2016021)
作者简介:  蔡惠坤,厦门大学助理教授、硕士研究生导师。顾开选,中国科学院理化技术研究所项目副研究员, gukaixuan@mail.ipc.ac.cn。
引用本文:    
蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
CAI Huikun, WENG Zeju, GU Kaixuan, WANG Kaikai, ZHENG Jianpeng, WANG Junjie. Advances in Deep Cryogenic Treatment of Cemented Carbide. Materials Reports, 2019, 33(1): 175-182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901021  或          http://www.mater-rep.com/CN/Y2019/V33/I1/175
1 Podgornik B, Paulin I, Zajec B, et al. Journal of Materials Processing Technology,2016,229,398.2 Gulyaev A P. Metallurgy,1937,(12),65.3 Barron R F. Cryogenics,1982,22(8),409.4 Molinari A, Pellizzari M, Gialanella S, et al. Journal of Materials Processing Technology,2001,118(1-3),350.5 Li W X, Gong H R, Bo Z H, et al. Materials Review,2000,14(3),16(in Chinese).黎文献,龚浩然,柏振海,等.材料导报,2000,14(3),16.6 Sun Y, Yu Q B, Min H. Transactions of Materials and Heat Treatment,2014,35(11),51(in Chinese).孙莹,于庆波,闵昊.材料热处理学报,2014,35(11),51.7 Gu K X, Zhang H, Wang H J, et al. Heat Treatment of Metals,2015,40(10),104(in Chinese).顾开选,张红,王洪建,等.金属热处理,2015,40(10),104.8 Zhang S Q, Yin Y, Li P. Heat Treatment of Metals,2015,40(2),169(in Chinese).张胜全,尹赟,李鹏.金属热处理,2015,40(2),169.9 Wang S X, Gu K X, Wang J J, et al. Chinese Journal of Rare Metals,2013,37(2),230(in Chinese).王思贤,顾开选,王俊杰,等.稀有金属,2013,37(2),230.10 Araghchi M, Mansouri H, Vafaei R, et al. Materials Science & Engi-neering A,2017,689,48.11 Huang Y Z, Jin F W. Heat Treatment of Metals,2001,26(7),5(in Chinese).黄云战,晋芳伟.金属热处理,2001,26(7),5.12 Mónica P, Bravo P M, Cárdenas D. Journal of Materials Processing Technology,2017,239,297.13 Xu L Y, Zhu J, Jing H Y, et al. Materials Science & Engineering A,2016,673,503.14 Zhang M Y, Li K Z, Shi X H, et al. Journal of Materials Science & Technology,2018,34(2),409.15 Yang J G, Tan D Q, Chen H. Cemented carbide, Central South University Press, China,2012(in Chinese).羊建高,谭敦强,陈颢.硬质合金,中南大学出版社,2012.16 Sheng S. Machinery,1982,20(9),58(in Chinese).生水.机械制造,1982,20(9),58.17 Liu Y J, Li Y, Zeng Z X, et al. Tool Engineering,2001,35(3),19(in Chinese).刘亚俊,李勇,曾志新,等.工具技术,2001,35(3),19.18 Jiang Y, Chen D. Materials Science & Engineering A,2011,528(3),1735.19 Chen Z H, Fan L, Jiang Y, et al. Cemented Carbide,2010,27(1),1(in Chinese).陈振华,樊恋,姜勇,等.硬质合金,2010,27(1),1.20 Zhang P, Wu E X. Cemented Carbide,2007,24(2),96(in Chinese).张平,吴恩熙.硬质合金,2007,24(2),96.21 Chen H W. Cemented Carbide,1995,12(1),33(in Chinese).陈红卫.硬质合金,1995,12(1),33.22 Yin C, Guo J Z, Ren Y, et al. Cemented Carbide,2014,31(4),224(in Chinese).尹超,郭建中,任跃,等.硬质合金,2014,31(4),224.23 Tang Y F, Huang J W, Zuo R, et al. Cemented Carbide,2015,32(6),372(in Chinese).唐云锋,黄继武,左锐,等.硬质合金,2015,32(6),372.24 Padmakumar M, Dinakaran D, Guruprasath J. Materials Today: Procee-dings,2018,5(2),7797.25 Gu L N, Huang J W, Tang Y F, et al. Journal of Alloys & Compounds,2015,620,116.26 Shan S J. Cemented Carbide,1997,14(1),32(in Chinese).单世瑾.硬质合金,1997,14(1),32.27 Chen Z H, Jiang Y, Fan L, et al. Transactions of Materials and Heat Treatment,2011,32(7),26(in Chinese).陈振华,姜勇,樊恋,等.材料热处理学报,2011,32(7),26.28 Xie C H, Huang J W, Tang Y F, et al. Transactions of Nonferrous Metals Society of China,2015,25(9),3023.29 Jiao P H. Study of ultrafine-grain YG10 cemented carbide preparation and deep cryogenic treatment. Master’s thesis, Southwest University,China,2012(in Chinese).焦鹏鹤.超细晶YG10硬质合金的制备及深冷处理研究.硕士学位论文,西南大学,2012.30 Liu S R, Liu F. Transactions of Metal Heat Treatment,1997,18(4),57(in Chinese).刘寿荣,刘方.金属热处理学报,1997,18(4),57.31 Sreeramareddy T V, Sornakumar T, Venkataramareddy M, et al. International Journal of Refractory Metals & Hard Materials,2009,27(1),181.32 Sreeramareddy T V, Sornakumar T, Venkataramareddy M, et al. Cryogenics,2008,48(9-10),458.33 Gill S S, Singh J, Singh H, et al. International Journal of Advanced Manufacturing Technology,2012,58(1-4),119.34 Gao Y, Luo B H, Bai Z H, et al. International Journal of Refractory Metals & Hard Materials,2016,58,42.35 Yong A Y L, Seah K H W, Rahman M. International Journal of Advanced Manufacturing Technology,2007,32(7-8),638.36 Özbek N A, Çiçek A, Gülesin M, et al. International Journal of Machine Tools & Manufacture, 2014, 86(6), 34.37 Chen Z H, Xie P R, Jiang Y, et al. Journal of Hunan University (Natural Sciences),2014,41(7),1(in Chinese).陈振华,谢配儒,姜勇,等.湖南大学学报(自然科学版),2014,41(7),1.38 Wu L Q, Qian D, Qin Y. Tool Engineering,2011,45(8),70(in Chinese).吴良芹,钱丹,秦艳.工具技术,2011,45(8),70.39 Fan L. The research of deep cryogenic treatment of anvil-use YL20.3 cemented carbide. Master’s thesis, Hunan University,China,2010(in Chinese).樊恋.钉锤用YL20.3硬质合金深冷处理研究.硕士学位论文,湖南大学,2010.40 Zhang H, Wang J J, Guo J, et al. Heat Treatment Technology and Equipment,2008,29(2),70(in Chinese).张红,王俊杰,郭嘉,等.热处理技术与装备,2008,29(2),70.41 Gill S S, Singh J, Singh H, et al. International Journal of Machine Tools & Manufacture,2011,51(1),25.42 Yong A Y L, Seah K H W, Rahman M. International Journal of Machine Tools & Manufacture,2006,46(15),2051.43 Gill S S, Singh H, Singh R, et al. Advanced Manufacturing Processes,2011,26(11),1430.44 Özbek N A, Çiçek A, Gülesin M, et al. Tribology International,2016,94,223.45 Gill S S, Singh R, Singh H, et al. International Journal of Machine Tools & Manufacture,2009,49(3-4),256.46 Vadivel K, Rudramoorthy R. International Journal of Advanced Manufacturing Technology,2009,42(3-4),222.47 Exner H E. Conference on the Science of Hard Materials. Wyoming,1983,pp.233.48 Gill S S, Singh J, Singh R, et al. International Journal of Advanced Ma-nufacturing Technology,2011,54(1-4),59.49 Thakur D, Ramamoorthy B, Vijayaraghavan L. Materials Letters,2008,62(28),4403.50 Seah K H W , Rahman M, Yong K H. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture,2003,217(1),29.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[5] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[12] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[13] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed