Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 20070174-13    https://doi.org/10.11896/cldb.20070174
  金属与金属基复合材料 |
SiC/Al基复合材料界面调控
焦宇鸿1,2, 朱建锋1,*, 王芬1
1 陕西科技大学材料科学与工程学院,陕西省无机材料绿色制备与功能化重点实验室,西安 710021
2 蚌埠学院材料与化学工程学院,安徽 蚌埠 233000
The Regulation of Interfacial Bonding in SiC/Al Matrix Composites
JIAO Yuhong1,2, ZHU Jianfeng1,*, WANG Fen1
1 Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2 School of Material and Chemical Engineering, Bengbu University, Bengbu 233000, Anhui, China
下载:  全 文 ( PDF ) ( 5878KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面润湿性和界面反应极大地限制了SiC/Al基复合材料的制备和性能提升。虽然通过实验、计算机模拟计算等研究揭示了Al-SiC的高温润湿行为和界面反应机理,得到了界面润湿和界面反应的理论模型,但调控润湿性的因素多且复杂,一些因素相互影响,尚未系统地提出SiC/Al基复合材料界面润湿性的影响因素,调控界面润湿性和界面反应的关键因素仍不明确,SiC/Al基复合材界面的相关研究仍存在争议。
为了探索控制界面润湿性的关键因素,本文归纳了影响界面润湿性的实验因素:(1)SiC基体(纯度、表面粗糙度、气孔率、游离Si含量等)及表面极性(C端、Si端);(2)合金和基体的氧化层及其厚度(氧分压);(3)合金元素种类及含量;(4)接触温度和时间;(5)界面反应;(6)测试方法(座滴、挤出等);(7)液滴重量或尺寸及蒸发速率等。其中,除了(6)和(7)外,其他因素对调控SiC/Al基复合材料的界面润湿性具有重要意义,对复合材料的制备、性能提升和应用有重要指导价值。
纯Al和SiC在650 ℃就能发生界面反应,其产物Al4C3在室温下与H2O发生反应,该反应会破坏界面结合,使得复合材料性能急剧降低。根据密度泛函理论和热力学计算建立了界面反应的热力学、动力学模型,通过大量实验验证和显微结构分析,阐明了温度、反应时间、合金元素、SiC表面极性等因素对界面反应的影响,建立了抑制或消除有害界面反应的边界条件。与润湿性相比,界面反应严重制约了SiC/Al复合材料的性能提升及使用寿命的延长。但可通过简单工艺调控,通过向熔体中引入合金元素、改性SiC及过渡层和特殊制备工艺等能有效抑制界面反应,实现与润湿性协同调控。
本文分析了界面反应和界面润湿性的研究进展,归纳了SiC/Al基复合材料的界面调控的三个途径。一是添加合金元素进行有限的调控,在特定工艺中,添加一定量的合金元素能够提高润湿性,减弱或消除界面反应;二是设计界面反应和界面过渡层,获得预期的界面组成和结构,提高润湿性的同时消除有害界面反应;三是采用新制备工艺,利用现有的界面研究成果和模型,调控界面反应温度和时间直接获得性能优异的体材料,如累积辊压、喷射沉积、原位自生等。虽然上述途径能够调控SiC/Al基复合材料的界面,但仍存在各自的局限性,所得复合材料的性能和预期性能还有较大的差距。因而,对SiC/Al基复合材料的界面设计和调控仍然需要在理论计算的基础上,深入地研究和探索其界面反应、组成和结构,减小接触角,缩短达到平衡接触角的时间,从而降低制备工艺难度,提升材料性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦宇鸿
朱建锋
王芬
关键词:  SiC/Al基复合材料  界面润湿性  界面反应  界面调控因素    
Abstract: The major obstacle in fabrication and property improvements of SiC/Al matrix composites, which is urgent to get disposed, is weak wettability and interfacial reactions of the interface. Though the relative sessile drop experiments and thermodynamics calculations have revealed the mechanism of wettability and interfacial reactions, and built the theoretical model of wettability and interfacial reactions, the critical effective and tangled factors of the wettability are ambiguous yet due to the complex multi-factors of the wettability. The effectively controlled wettability factors of the SiC/Al matrix composites have not been suggested systematically. The results of wettability research contradicted each other.
To explore the influential critical factor of the interfacial wettability, the wettability effects of experiments factor were summarized as follow: (1) SiC matrix status (purity, roughness, porosity, free Si contents, etc.) and the polar surface of SiC (C-termination or Si-termination); (2) the oxide layer and its thickness of alloy matrix and SiC (PO2); (3) the species and contents of alloying elements; (4) the temperature and time of wetting tests; (5) interfacial reactions of Al-SiC; (6) technological of wetting test (sessile drop, dispensed sessile drop, etc.); (7) weight and size of molten alloy drop. Except (6) and (7), the above various influential factors of the wetting test are the wetting effectś key factors. The significance and value of these factors contribute to improving the fabrication and properties of SiC/Al matrix composites.
The interfacial reaction between pure Al and SiC which formed Al4C3 occurred at 650 ℃. The products reacted with water at room temperature which destroyed the structures of interfacial bonding, and thus the properties of the composites are damaged. Dynamic and thermodynamic mo-dels were built by density functional theory and thermodynamic calculation. The effects of temperature, reaction time, alloying elements and Sićs polar surface were revealed through experiments and analysis of microstructures to restrict the harmful interfacial reaction. Compared with the effects of wettability, the interfacial reaction of the SiC/Al system was the fundamental restriction on improving the properties and working life. Nevertheless, a part of the influential factors of wettability similar to the interfacial reaction factors were achieved coordination of regulation by alloying elements added, modified SiC and transition layer and special fabrication processes at lower temperature processes.
The interfacial wettability and reactions researches suggest that three routes have been found in the interface control. Firstly, limited control and regulation of interfacial wettability and reactions are alloying elements added, that is, it improves the wettability and decreases (or restrain) the interfacial reactions under controlled processes. Secondly, designing interfacial bonding and the transition layer of the prospective chemical composition, microstructure and adhesive work were obtained to control interfacial reactions and wettability. Thirdly, a novel process of the fabrications that referenced the researcherś results and thermodynamic models had obtained the promising properties of bulk samples controlled by the temperature and time of the interfacial wettability and reactions, such as accumulative roll bonding processes, spraying deposition and in-situ synthesis etc. Though the routes could control the interfacial wettability and reactions, the calculated and expectant properties results had a vast distance to above processes data. Therefore, to decrease the contact angle and wetting time, the designed interfacial reactions, compositions and microstructures could reveal deeply based on theory calculation, resulting in improved composites properties under moderate conditions.
Key words:  SiC/Al matrix composite    interfacial wettability    interfacial reaction    effective factors of interface controlled
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51972200)
通讯作者:  zhujf@sust.edu.cn   
作者简介:  焦宇鸿,2014年6月毕业于陕西科技大学,获得材料学硕士学位。现为陕西科技大学材料学院博士研究生,在朱建锋教授的指导下进行研究。目前主要研究领域为SiC/Al基复合材料。
朱建锋,二级教授,博士研究生导师,硅酸盐质文化遗产研究院院长,陕西省无机材料绿色制备与功能化重点实验室和陕西省陶瓷材料绿色制备与应用工程研究中心主任, 陕西省中青年科技创新领军人才,陕西省“特支计划”科技创新领军人才。中国硅酸盐学会陶瓷分会常务理事,陕西省硅酸盐学会副理事长,中散协生态修复材料专委会副理事长,中国工业陶瓷协会理事等。主要从事陶瓷材料绿色制备、新型储能与环境净化用功能复合材料、硅酸盐质文化遗产保护材料等领域的科研工作。近五年来,发表论文150余篇, SCI、EI检索120余篇;获授权发明专利100余项,转化应用15项;主持包括国家自然基金、陕西省自然基金、陕西省重大科技统筹、中石油等企业重点产业化项目等10余项。
引用本文:    
焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
JIAO Yuhong, ZHU Jianfeng, WANG Fen. The Regulation of Interfacial Bonding in SiC/Al Matrix Composites. Materials Reports, 2022, 36(9): 20070174-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070174  或          http://www.mater-rep.com/CN/Y2022/V36/I9/20070174
1 Kobashi M, Choh T. Journal of Materials Science, 1993, 28, 684.
2 Laurent V, Rado C, Eustathopoulos N. Materials Science and Enginee-ring A, 1996, 205(1-2), 1.
3 Shen P, Wang Y, Ren L H, et al. Applied Surface Science, 2015, 355, 930.
4 Wang Q S, Qing H Q, Wang N, et.al. Journal of Chongqing University of Technology(Natural Science), 2006(2), 52(in Chinese).
王庆松,秦海青,王娜,等.重庆理工大学学报(自然科学),2006(2), 52.
5 Ruan H G, Huang F X, Zhong M J, et al. Journal of Chongqing University of Technology(Natural Science), 2017,31(5), 60(in Chinese).
阮海光,黄福祥,钟明君,等.重庆理工大学学报(自然科学),2017,31(5), 60.
6 Momohjimoh I, Hussein M A, Al-Aqeeli N. Nanomaterials, 2019, 9(1), 86.
7 Yadav S, Gangwar S, Singh S. Materials Today: Proceedings, 2017, 4(4), 5571.
8 Bodunrin M O, Alaneme K K, Chown L H. Journal of Materials Research and Technology, 2015, 4(4), 434.
9 Sharma N K, Misra R K, Sharma S. International Journal of Solids and Structures, 2016, 102-103, 77.
10 Nam T H, Requena G, Degischer P. Composites Part A: Applied Science and Manufacturing, 2008, 39(5), 856.
11 Wang D M. Pressureless infiltration fabrication and interfacial modification of 3D-SiC/Al interpenetrating composite forelectronic packaging. Ph.D. Thesis, Hefei University of Technology,China,2019(in Chinese).
汪冬梅. 电子封装用3D-SiC/Al互穿复合材料的无压熔渗制备及其界面调控. 博士学位论文, 合肥工业大学, 2019.
12 Wang T. Preparation and properties of SiCp/Al composites with high volume fraction by powder metallurgy method. Master's Thesis, Xi'an University of Technology, China, 2018(in Chinese).
王韬. 高体分SiCP/Al基复合材料的粉末冶金法制备及其性能研究. 硕士学位论文, 西安理工大学, 2018.
13 Xiu Z Y, Zhang Q, Wang Z M, et al. Journal of Netshape Forming Engineering, 2018, 10(1), 91(in Chinese).
修子扬, 张强, 王子鸣, 等. 精密成形工程, 2018, 10(1), 91.
14 Zhang X H, Wang Q. Micronanoelectronic Technology, 2018(1), 18(in Chinese).
张晓辉, 王强.微纳电子技术, 2018(1), 18.
15 Lu J N, Wang J, Zheng K H, et al. Materials Reports, 2018, 32(Z1), 257(in Chinese).
路建宁, 王娟, 郑开宏,等.材料导报, 2018, 32(Z1), 257.
16 Luo W Q. Surface metallization, wetting and brazing of SiCp/Al compo-sites for electronic packaging. Master's Thesis, Jiangsu University, China, 2017(in Chinese).
骆文强. 电子封装SiCp/Al复合材料的镀膜金属化、润湿与钎焊研究. 硕士学位论文, 江苏大学, 2017.
17 Long L. Electronic & Packaging, 2006, 6(6), 16(in Chinese).
龙乐.电子与封装, 2006, 6(6), 16.
18 Laurent V, Chatain D,Eustathopoulos N. Journal of Materials Science, 1987, 22(1), 244.
19 Köhler W. Aluminium, 1975, 51(7), 443.
20 Nogi K, Ogino K. Transactions of the Japan Institute of Metals, 1988, 29(9), 742.
21 Han D S, Jones H, Atkinson H V. Journal of Materials Science, 1993, 28, 2654.
22 Zhang L Y, Shen P, Qi Y, et al. Applied Surface Science,2013,276,424.
23 Bao S, Tang K, Kvithyld A, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(8), 1930.
24 Wang W, Li Q, Du A, et al. Ceramics International,2018,44(5),5327.
25 Peteves S D, Tambuyser P, Helbach P, et al. Journal of Materials Science, 1990, 25 (8), 3765.
26 Laurent V, Chatain D, Chatillon C, et al. Acta Metallurgica, 1988, 36(7), 1797.
27 Viala J C, Bosselet F, Laurent V, et al. Journal of Materials Science, 1993, 28(19), 5301.
28 León C A, Drewb R A L. Composites, Part A, 2002, 33, 1429.
29 Shi L X, Shen P, Zhang D, et al. Materials Chemistry and Physics, 2011, 130(3), 1125.
30 Cong X S, Shen P, Wang Y, et al. Applied Surface Science, 2014, 317, 140.
31 Gao Y Y, Qiu F, Geng R, et al. Materials Characterization, 2018, 141, 156.
32 Xu X Y, Wang H Y, Min Z, et al. Applied Surface Science, 2018, 437, 103
33 An Q, Cong X S, Shen P, et al. Journal of Alloys and Compounds, 2019, 784, 1212.
34 Xie J F, Liu T S, Li Q, et al. Materials Science and Engineering A, 2019, 762, 138092.
35 Tong H T, Qiu F, Zuo R, et al. Applied Surface Science, 2020, 501, 144265.
36 Ferro A C, Derby B. Acta Metallurgica et Materialia,1995,43(8),3061.
37 Zhu Y L, Zhang M F, Zhang X Z, et al. Journal of Alloys and Compounds, 2020, 824, 153972.
38 Wang W M. Micro-structure of liqud Al-Si alloy and evolution of Si clusters. Ph.D. Thesis, Shandong University of Technology, China, 1998(in Chinese).
王伟民. Al-Si合金熔体的微观结构及Si原子集团的演变行为. 博士学位论文,山东大学, 1998.
39 Iseki T, Kameda T, Maruyama T. Journal of Materials Science, 1984, 19(5), 1692.
40 Arsenault R J, Romero J C. Scripta Metallurgica et Materialia, 1995, 32(11), 1783.
41 Romero J C, Arsenault R J. Acta Metallurgica et Materialia, 1995, 43(2), 849.
42 Wu C C, Gao T, Sun Q Q, et al. Journal of Alloys and Compounds, 2018, 754, 39.
43 Zhang G F, Cai J, Chen B Q, et al. Materials & Design, 2016, 110, 653.
44 Rodríguez R M, Pech C M I, Rendón-Angeles J C, et al. Composites Science and Technology, 2006, 66(7-8), 1056.
45 Cong X S. Wettability of silicon carbide by molten aluminum or aluminum alloys and their interfacial microstructures. Master's Thesis, Jilin University, China, 2014(in Chinese).
丛晓霜. Al及其合金与多晶α-SiC陶瓷的润湿及界面结构. 硕士学位论文, 吉林大学, 2014.
46 Li S, Arsenault R J, Jena P. Journal of Applied Physics, 1988, 64(11), 6246.
47 Wu Q J, Xie J P, Wang C Q, et al. Surface Science, 2018, 670, 1
48 Liu B B, Yang J F. Journal of Alloys and Compounds, 2019, 791, 530.
49 Wu Q J, Xie J P, Wang A Q, et al. Computational Materials Science, 2019, 158, 110.
50 Qiu C H, Su Y S, Chen B Y, et al. Computational Materials Science, 2020, 175, 109608
51 Fang X, Fan T X, Zhang D. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2013, 44(11), 5192.
52 Fang X. Theoretical prediction of interfacial reaction and work of adhesion in SiC/Al composites. Master's Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese).
房鑫. SiC/Al复合材料界面反应与粘着功理论预测研究. 硕士学位论文, 上海交通大学, 2013.
53 Li X. The density functional theory (DFT) study on interfacial structures states of SiCp reinforced Al matrix composite. Master's Thesis, Southwest University, China, 2016(in Chinese).
李孝. 碳化硅增强铝基复合材料界面性质理论研究, 硕士学位论文, 西南大学, 2016.
54 Zou A H, Zhou X L, Kang Z B. Journal of Inorganic Materials, 2019, 34(11), 1167(in Chinese).
邹爱华, 周贤良, 康志兵, 等.无机材料学报, 2019, 34(11), 1167.
55 Yaghmaee M S, Kaptay G. Materials Science Forum,2005,473-474,415
56 Zuo R. The reaction and structure evolution at the interfaces of Al/Al alloy SiC/SiC(ox). Master's Thesis, Jilin University, 2017(in Chinese).
左蕊. Al/Al合金-SiC/SiC(ox)界面反应与结构演变. 硕士学位论文, 吉林大学, 2017.
57 Gambaro S, Valenza F, Cacciamani G, et al. Journal of Alloys and Compounds, 2020, 817, 152715.
58 Valenza F, Gambaro S, Muolo M L, et al. Journal of the European Ceramic Society, 2018, 38(11), 3727.
59 Shi Z L, Ochiai S, Gu M Y, et al. Surface and Interface Analysis, 2001, 31(5), 375.
60 Zou A H, Zhou X L, Li D S, et al. Composite Interfaces,2013,20(2),107.
61 Ren S B, He X B, Qu X H, et al. Journal of Alloys and Compounds, 2008, 455(1-2), 424.
62 Park J, Lee J, Jo I, et al. Surface and Coatings Technology, 2016, 307, 399.
63 Kori P S, Vanarotti M, Angadi B M, et al. IOP Conference Series, Materials Science and Engineering, 2017, 225, 012265.
64 Dong C G, Cui R, Wang R C, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(4), 863.
65 Wang X H, Hu Q G, Zhong S Y, et al. Materials Science Forum, 2019, 944, 705.
66 Huang Z K, Zhang X Z, Wang T T, et al. Surface & Coatings Technology, 2018, 335, 198.
67 Huang Z K, Liu H, Liu G W, et al. Materials Chemistry and Physics, 2018, 211, 329.
68 Tamilanban T, Ravikumar T S. Materials Today: Proceedings, 2021, 45, 5899.
69 Prakash B, Manimaran M. Materials Today: Proceedings, 2021, 39, 22.
70 Kumar M N, Maurya M, Srivastava A K, et al. Materials Today: Proceedings, 2020, 25, 755.
71 Zhang W Y, Du Y H, Zhang P, et al. Journal of Materials Processing Technology, 2019, 271, 226.
72 Kanth U R, Rao P S, Krishna M G. Journal of Materials Research and Technology, 2019, 8(1), 737.
73 Kumar R A, Krishnakumar T S. Materials Today:Proceedings, 2018, 5(11), 23853.
74 Khosravi H, Tohidlou E. Materials Science and Engineering A, 2018, 710, 334.
75 Mousavi A S H, Sabzi M. Materials Science and Engineering A, 2018, 737, 230.
76 Zhang W Y, Du Y H, Zhang P. Journal of Alloys and Compounds, 2019, 787, 206.
77 Dhoria S H, Durga P R V, Venkata S K. Materials Today: Proceedings, 2019, 18(6), 2107.
78 Mohamadigangaraj J, Nourouzi S, Jamshidi A H. Transactions of Nonferrous Metals Society of China, 2019, 29(4), 710.
79 Zhao X, Gu D D, Ma C L, et al. Vacuum, 2019, 160, 189.
80 Cui C Y, Li X D, Fang C, et al. Materials & Design, 2018, 143, 256.
81 Riquelme A, Escalera R M D, Rodrigo P, et al. Journal of Alloys and Compounds, 2017, 727, 671.
82 Tailor S, Sharma V K, Mohanty R M, et al. Journal of Surface Engineered Materials and Advanced Technology, 2012, 2(3), 227.
83 Dinesh B P, Prasannakumar B, Marimuthu P, et al. Archives of Civil and Mechanical Engineering, 2019, 19(3), 756.
84 Gao P H, Li J P, Zhong Y, et al. Rare Metal Materials and Engineering, 2015, 44(10), 2396.
85 Wu H B, Li J Z, Li D F, et al. Materials Science Forum, 2019, 944, 571
86 Amirkhanlou S, Jamaati R, Niroumand B, et al. Journal of Materials Processing Technology, 2011, 211(6), 1159.
86 Amirkhanlou S, Jamaati R, Niroumand B, et al. Journal of Materials Processing Technology, 2011, 211(6), 1159.
87 Hosseini M A, Pouraliakbar H, Bagheri R, et al. Composites Part B: Engineering, 2017, 125, 49.
88 Khdair A I, Fathy A. Journal of Materials Research and Technology, 2020, 9(1), 478.
89 Hanamantraygouda M B, Shivakumar B P, Siddappa P N, et al. IOP Conference Series: Materials Science and Engineering,2018,310,12072.
90 Jiao Y H. Recherch of synthesis and technology of SiC, SiC(w)/SiC composites. Master's Thesis, Shaanxi University of Science & Technology, China, 2014(in Chinese).
焦宇鸿. SiC、SiC(w)/SiC材料的制备及其工艺研究. 硕士学位论文, 陕西科技大学, 2014.
91 Zhao Y B. Recherch of SiC nanoparticles and SiC/Al composites by in-situ reaction. Master's Thesis, Shaanxi University of Science & Techno-logy, China, 2016(in Chinese).
赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究. 硕士学位论文, 陕西科技大学, 2016.
92 Wang F, Zhao Y B, Zhu J F, el at. Journal of Shaanxi University of Science, 2016, 34(1), 52(in Chinese).
王芬, 赵渊博, 朱建锋, 等.陕西科技大学学报(自然科学版), 2016, 34(1), 52.
93 Jiao Y H, Zhu J F, Li X L, et al. Ceramics International, 2020, 46(11), 17675.
94 Du X F, Gao T, Qian Z, et al. Journal of Alloys and Compounds, 2018, 750, 935.
95 Du X F, Gao T, Liu G L, et al. Journal of Alloys and Compounds, 2017, 695, 1.
96 Gao T, Wang D, Du X F, et al. Journal of Alloys and Compounds, 2016, 685, 91.
97 Du X F, Gao T, Li D K, et al. Journal of Alloys and Compounds, 2014, 588, 374.
98 Huo S Y, Xie L J, Xiang J F, et al. Applied Physics A, 2018, 124(2), 209.
99 Zhan J M, Jian W R, Tang X C, et al. Computational Materials Science, 2019, 156, 187.
100 Guo X L, Guo Q, Li Z Q, et al. Scripta Materialia, 2016, 114, 56.
101 Mayer C R, Yang L W, Singh S S, et al. Acta Materialia, 2016, 114, 25.
102 Shen S J, Chen Y S, Yang L W, et al. Materials Science and Enginee-ring A, 2020, 786, 139387.
[1] 王杏娟, 曲硕, 刘然, 朱立光, 朴占龙, 邸天成, 王宇. 高钛钢专用连铸保护渣研究现状及展望[J]. 材料导报, 2021, 35(Z1): 467-472.
[2] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[3] 王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
[4] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[7] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[8] 侯斌, 刘凤美, 王宏芹, 李琪, 万娣, 张宇鹏. 不同温度下Sn-0.7Cu钎料在非晶Fe84.3Si10.3B5.4合金上的润湿行为及界面特征[J]. 材料导报, 2018, 32(18): 3208-3212.
[9] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[10] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed