The Regulation of Interfacial Bonding in SiC/Al Matrix Composites
JIAO Yuhong1,2, ZHU Jianfeng1,*, WANG Fen1
1 Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China 2 School of Material and Chemical Engineering, Bengbu University, Bengbu 233000, Anhui, China
Abstract: The major obstacle in fabrication and property improvements of SiC/Al matrix composites, which is urgent to get disposed, is weak wettability and interfacial reactions of the interface. Though the relative sessile drop experiments and thermodynamics calculations have revealed the mechanism of wettability and interfacial reactions, and built the theoretical model of wettability and interfacial reactions, the critical effective and tangled factors of the wettability are ambiguous yet due to the complex multi-factors of the wettability. The effectively controlled wettability factors of the SiC/Al matrix composites have not been suggested systematically. The results of wettability research contradicted each other. To explore the influential critical factor of the interfacial wettability, the wettability effects of experiments factor were summarized as follow: (1) SiC matrix status (purity, roughness, porosity, free Si contents, etc.) and the polar surface of SiC (C-termination or Si-termination); (2) the oxide layer and its thickness of alloy matrix and SiC (PO2); (3) the species and contents of alloying elements; (4) the temperature and time of wetting tests; (5) interfacial reactions of Al-SiC; (6) technological of wetting test (sessile drop, dispensed sessile drop, etc.); (7) weight and size of molten alloy drop. Except (6) and (7), the above various influential factors of the wetting test are the wetting effectś key factors. The significance and value of these factors contribute to improving the fabrication and properties of SiC/Al matrix composites. The interfacial reaction between pure Al and SiC which formed Al4C3 occurred at 650 ℃. The products reacted with water at room temperature which destroyed the structures of interfacial bonding, and thus the properties of the composites are damaged. Dynamic and thermodynamic mo-dels were built by density functional theory and thermodynamic calculation. The effects of temperature, reaction time, alloying elements and Sićs polar surface were revealed through experiments and analysis of microstructures to restrict the harmful interfacial reaction. Compared with the effects of wettability, the interfacial reaction of the SiC/Al system was the fundamental restriction on improving the properties and working life. Nevertheless, a part of the influential factors of wettability similar to the interfacial reaction factors were achieved coordination of regulation by alloying elements added, modified SiC and transition layer and special fabrication processes at lower temperature processes. The interfacial wettability and reactions researches suggest that three routes have been found in the interface control. Firstly, limited control and regulation of interfacial wettability and reactions are alloying elements added, that is, it improves the wettability and decreases (or restrain) the interfacial reactions under controlled processes. Secondly, designing interfacial bonding and the transition layer of the prospective chemical composition, microstructure and adhesive work were obtained to control interfacial reactions and wettability. Thirdly, a novel process of the fabrications that referenced the researcherś results and thermodynamic models had obtained the promising properties of bulk samples controlled by the temperature and time of the interfacial wettability and reactions, such as accumulative roll bonding processes, spraying deposition and in-situ synthesis etc. Though the routes could control the interfacial wettability and reactions, the calculated and expectant properties results had a vast distance to above processes data. Therefore, to decrease the contact angle and wetting time, the designed interfacial reactions, compositions and microstructures could reveal deeply based on theory calculation, resulting in improved composites properties under moderate conditions.
1 Kobashi M, Choh T. Journal of Materials Science, 1993, 28, 684. 2 Laurent V, Rado C, Eustathopoulos N. Materials Science and Enginee-ring A, 1996, 205(1-2), 1. 3 Shen P, Wang Y, Ren L H, et al. Applied Surface Science, 2015, 355, 930. 4 Wang Q S, Qing H Q, Wang N, et.al. Journal of Chongqing University of Technology(Natural Science), 2006(2), 52(in Chinese). 王庆松,秦海青,王娜,等.重庆理工大学学报(自然科学),2006(2), 52. 5 Ruan H G, Huang F X, Zhong M J, et al. Journal of Chongqing University of Technology(Natural Science), 2017,31(5), 60(in Chinese). 阮海光,黄福祥,钟明君,等.重庆理工大学学报(自然科学),2017,31(5), 60. 6 Momohjimoh I, Hussein M A, Al-Aqeeli N. Nanomaterials, 2019, 9(1), 86. 7 Yadav S, Gangwar S, Singh S. Materials Today: Proceedings, 2017, 4(4), 5571. 8 Bodunrin M O, Alaneme K K, Chown L H. Journal of Materials Research and Technology, 2015, 4(4), 434. 9 Sharma N K, Misra R K, Sharma S. International Journal of Solids and Structures, 2016, 102-103, 77. 10 Nam T H, Requena G, Degischer P. Composites Part A: Applied Science and Manufacturing, 2008, 39(5), 856. 11 Wang D M. Pressureless infiltration fabrication and interfacial modification of 3D-SiC/Al interpenetrating composite forelectronic packaging. Ph.D. Thesis, Hefei University of Technology,China,2019(in Chinese). 汪冬梅. 电子封装用3D-SiC/Al互穿复合材料的无压熔渗制备及其界面调控. 博士学位论文, 合肥工业大学, 2019. 12 Wang T. Preparation and properties of SiCp/Al composites with high volume fraction by powder metallurgy method. Master's Thesis, Xi'an University of Technology, China, 2018(in Chinese). 王韬. 高体分SiCP/Al基复合材料的粉末冶金法制备及其性能研究. 硕士学位论文, 西安理工大学, 2018. 13 Xiu Z Y, Zhang Q, Wang Z M, et al. Journal of Netshape Forming Engineering, 2018, 10(1), 91(in Chinese). 修子扬, 张强, 王子鸣, 等. 精密成形工程, 2018, 10(1), 91. 14 Zhang X H, Wang Q. Micronanoelectronic Technology, 2018(1), 18(in Chinese). 张晓辉, 王强.微纳电子技术, 2018(1), 18. 15 Lu J N, Wang J, Zheng K H, et al. Materials Reports, 2018, 32(Z1), 257(in Chinese). 路建宁, 王娟, 郑开宏,等.材料导报, 2018, 32(Z1), 257. 16 Luo W Q. Surface metallization, wetting and brazing of SiCp/Al compo-sites for electronic packaging. Master's Thesis, Jiangsu University, China, 2017(in Chinese). 骆文强. 电子封装SiCp/Al复合材料的镀膜金属化、润湿与钎焊研究. 硕士学位论文, 江苏大学, 2017. 17 Long L. Electronic & Packaging, 2006, 6(6), 16(in Chinese). 龙乐.电子与封装, 2006, 6(6), 16. 18 Laurent V, Chatain D,Eustathopoulos N. Journal of Materials Science, 1987, 22(1), 244. 19 Köhler W. Aluminium, 1975, 51(7), 443. 20 Nogi K, Ogino K. Transactions of the Japan Institute of Metals, 1988, 29(9), 742. 21 Han D S, Jones H, Atkinson H V. Journal of Materials Science, 1993, 28, 2654. 22 Zhang L Y, Shen P, Qi Y, et al. Applied Surface Science,2013,276,424. 23 Bao S, Tang K, Kvithyld A, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(8), 1930. 24 Wang W, Li Q, Du A, et al. Ceramics International,2018,44(5),5327. 25 Peteves S D, Tambuyser P, Helbach P, et al. Journal of Materials Science, 1990, 25 (8), 3765. 26 Laurent V, Chatain D, Chatillon C, et al. Acta Metallurgica, 1988, 36(7), 1797. 27 Viala J C, Bosselet F, Laurent V, et al. Journal of Materials Science, 1993, 28(19), 5301. 28 León C A, Drewb R A L. Composites, Part A, 2002, 33, 1429. 29 Shi L X, Shen P, Zhang D, et al. Materials Chemistry and Physics, 2011, 130(3), 1125. 30 Cong X S, Shen P, Wang Y, et al. Applied Surface Science, 2014, 317, 140. 31 Gao Y Y, Qiu F, Geng R, et al. Materials Characterization, 2018, 141, 156. 32 Xu X Y, Wang H Y, Min Z, et al. Applied Surface Science, 2018, 437, 103 33 An Q, Cong X S, Shen P, et al. Journal of Alloys and Compounds, 2019, 784, 1212. 34 Xie J F, Liu T S, Li Q, et al. Materials Science and Engineering A, 2019, 762, 138092. 35 Tong H T, Qiu F, Zuo R, et al. Applied Surface Science, 2020, 501, 144265. 36 Ferro A C, Derby B. Acta Metallurgica et Materialia,1995,43(8),3061. 37 Zhu Y L, Zhang M F, Zhang X Z, et al. Journal of Alloys and Compounds, 2020, 824, 153972. 38 Wang W M. Micro-structure of liqud Al-Si alloy and evolution of Si clusters. Ph.D. Thesis, Shandong University of Technology, China, 1998(in Chinese). 王伟民. Al-Si合金熔体的微观结构及Si原子集团的演变行为. 博士学位论文,山东大学, 1998. 39 Iseki T, Kameda T, Maruyama T. Journal of Materials Science, 1984, 19(5), 1692. 40 Arsenault R J, Romero J C. Scripta Metallurgica et Materialia, 1995, 32(11), 1783. 41 Romero J C, Arsenault R J. Acta Metallurgica et Materialia, 1995, 43(2), 849. 42 Wu C C, Gao T, Sun Q Q, et al. Journal of Alloys and Compounds, 2018, 754, 39. 43 Zhang G F, Cai J, Chen B Q, et al. Materials & Design, 2016, 110, 653. 44 Rodríguez R M, Pech C M I, Rendón-Angeles J C, et al. Composites Science and Technology, 2006, 66(7-8), 1056. 45 Cong X S. Wettability of silicon carbide by molten aluminum or aluminum alloys and their interfacial microstructures. Master's Thesis, Jilin University, China, 2014(in Chinese). 丛晓霜. Al及其合金与多晶α-SiC陶瓷的润湿及界面结构. 硕士学位论文, 吉林大学, 2014. 46 Li S, Arsenault R J, Jena P. Journal of Applied Physics, 1988, 64(11), 6246. 47 Wu Q J, Xie J P, Wang C Q, et al. Surface Science, 2018, 670, 1 48 Liu B B, Yang J F. Journal of Alloys and Compounds, 2019, 791, 530. 49 Wu Q J, Xie J P, Wang A Q, et al. Computational Materials Science, 2019, 158, 110. 50 Qiu C H, Su Y S, Chen B Y, et al. Computational Materials Science, 2020, 175, 109608 51 Fang X, Fan T X, Zhang D. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2013, 44(11), 5192. 52 Fang X. Theoretical prediction of interfacial reaction and work of adhesion in SiC/Al composites. Master's Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese). 房鑫. SiC/Al复合材料界面反应与粘着功理论预测研究. 硕士学位论文, 上海交通大学, 2013. 53 Li X. The density functional theory (DFT) study on interfacial structures states of SiCp reinforced Al matrix composite. Master's Thesis, Southwest University, China, 2016(in Chinese). 李孝. 碳化硅增强铝基复合材料界面性质理论研究, 硕士学位论文, 西南大学, 2016. 54 Zou A H, Zhou X L, Kang Z B. Journal of Inorganic Materials, 2019, 34(11), 1167(in Chinese). 邹爱华, 周贤良, 康志兵, 等.无机材料学报, 2019, 34(11), 1167. 55 Yaghmaee M S, Kaptay G. Materials Science Forum,2005,473-474,415 56 Zuo R. The reaction and structure evolution at the interfaces of Al/Al alloy SiC/SiC(ox). Master's Thesis, Jilin University, 2017(in Chinese). 左蕊. Al/Al合金-SiC/SiC(ox)界面反应与结构演变. 硕士学位论文, 吉林大学, 2017. 57 Gambaro S, Valenza F, Cacciamani G, et al. Journal of Alloys and Compounds, 2020, 817, 152715. 58 Valenza F, Gambaro S, Muolo M L, et al. Journal of the European Ceramic Society, 2018, 38(11), 3727. 59 Shi Z L, Ochiai S, Gu M Y, et al. Surface and Interface Analysis, 2001, 31(5), 375. 60 Zou A H, Zhou X L, Li D S, et al. Composite Interfaces,2013,20(2),107. 61 Ren S B, He X B, Qu X H, et al. Journal of Alloys and Compounds, 2008, 455(1-2), 424. 62 Park J, Lee J, Jo I, et al. Surface and Coatings Technology, 2016, 307, 399. 63 Kori P S, Vanarotti M, Angadi B M, et al. IOP Conference Series, Materials Science and Engineering, 2017, 225, 012265. 64 Dong C G, Cui R, Wang R C, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(4), 863. 65 Wang X H, Hu Q G, Zhong S Y, et al. Materials Science Forum, 2019, 944, 705. 66 Huang Z K, Zhang X Z, Wang T T, et al. Surface & Coatings Technology, 2018, 335, 198. 67 Huang Z K, Liu H, Liu G W, et al. Materials Chemistry and Physics, 2018, 211, 329. 68 Tamilanban T, Ravikumar T S. Materials Today: Proceedings, 2021, 45, 5899. 69 Prakash B, Manimaran M. Materials Today: Proceedings, 2021, 39, 22. 70 Kumar M N, Maurya M, Srivastava A K, et al. Materials Today: Proceedings, 2020, 25, 755. 71 Zhang W Y, Du Y H, Zhang P, et al. Journal of Materials Processing Technology, 2019, 271, 226. 72 Kanth U R, Rao P S, Krishna M G. Journal of Materials Research and Technology, 2019, 8(1), 737. 73 Kumar R A, Krishnakumar T S. Materials Today:Proceedings, 2018, 5(11), 23853. 74 Khosravi H, Tohidlou E. Materials Science and Engineering A, 2018, 710, 334. 75 Mousavi A S H, Sabzi M. Materials Science and Engineering A, 2018, 737, 230. 76 Zhang W Y, Du Y H, Zhang P. Journal of Alloys and Compounds, 2019, 787, 206. 77 Dhoria S H, Durga P R V, Venkata S K. Materials Today: Proceedings, 2019, 18(6), 2107. 78 Mohamadigangaraj J, Nourouzi S, Jamshidi A H. Transactions of Nonferrous Metals Society of China, 2019, 29(4), 710. 79 Zhao X, Gu D D, Ma C L, et al. Vacuum, 2019, 160, 189. 80 Cui C Y, Li X D, Fang C, et al. Materials & Design, 2018, 143, 256. 81 Riquelme A, Escalera R M D, Rodrigo P, et al. Journal of Alloys and Compounds, 2017, 727, 671. 82 Tailor S, Sharma V K, Mohanty R M, et al. Journal of Surface Engineered Materials and Advanced Technology, 2012, 2(3), 227. 83 Dinesh B P, Prasannakumar B, Marimuthu P, et al. Archives of Civil and Mechanical Engineering, 2019, 19(3), 756. 84 Gao P H, Li J P, Zhong Y, et al. Rare Metal Materials and Engineering, 2015, 44(10), 2396. 85 Wu H B, Li J Z, Li D F, et al. Materials Science Forum, 2019, 944, 571 86 Amirkhanlou S, Jamaati R, Niroumand B, et al. Journal of Materials Processing Technology, 2011, 211(6), 1159. 86 Amirkhanlou S, Jamaati R, Niroumand B, et al. Journal of Materials Processing Technology, 2011, 211(6), 1159. 87 Hosseini M A, Pouraliakbar H, Bagheri R, et al. Composites Part B: Engineering, 2017, 125, 49. 88 Khdair A I, Fathy A. Journal of Materials Research and Technology, 2020, 9(1), 478. 89 Hanamantraygouda M B, Shivakumar B P, Siddappa P N, et al. IOP Conference Series: Materials Science and Engineering,2018,310,12072. 90 Jiao Y H. Recherch of synthesis and technology of SiC, SiC(w)/SiC composites. Master's Thesis, Shaanxi University of Science & Technology, China, 2014(in Chinese). 焦宇鸿. SiC、SiC(w)/SiC材料的制备及其工艺研究. 硕士学位论文, 陕西科技大学, 2014. 91 Zhao Y B. Recherch of SiC nanoparticles and SiC/Al composites by in-situ reaction. Master's Thesis, Shaanxi University of Science & Techno-logy, China, 2016(in Chinese). 赵渊博. 原位合成SiC纳米颗粒及SiC/Al复合材料的研究. 硕士学位论文, 陕西科技大学, 2016. 92 Wang F, Zhao Y B, Zhu J F, el at. Journal of Shaanxi University of Science, 2016, 34(1), 52(in Chinese). 王芬, 赵渊博, 朱建锋, 等.陕西科技大学学报(自然科学版), 2016, 34(1), 52. 93 Jiao Y H, Zhu J F, Li X L, et al. Ceramics International, 2020, 46(11), 17675. 94 Du X F, Gao T, Qian Z, et al. Journal of Alloys and Compounds, 2018, 750, 935. 95 Du X F, Gao T, Liu G L, et al. Journal of Alloys and Compounds, 2017, 695, 1. 96 Gao T, Wang D, Du X F, et al. Journal of Alloys and Compounds, 2016, 685, 91. 97 Du X F, Gao T, Li D K, et al. Journal of Alloys and Compounds, 2014, 588, 374. 98 Huo S Y, Xie L J, Xiang J F, et al. Applied Physics A, 2018, 124(2), 209. 99 Zhan J M, Jian W R, Tang X C, et al. Computational Materials Science, 2019, 156, 187. 100 Guo X L, Guo Q, Li Z Q, et al. Scripta Materialia, 2016, 114, 56. 101 Mayer C R, Yang L W, Singh S S, et al. Acta Materialia, 2016, 114, 25. 102 Shen S J, Chen Y S, Yang L W, et al. Materials Science and Enginee-ring A, 2020, 786, 139387.