Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21090166-11    https://doi.org/10.11896/cldb.21090166
  表面工程材料与技术 |
三元MAX相层状陶瓷材料高温摩擦学性能研究进展
朱咸勇1,2, 丁振宇1, 马国政2, 朴钟宇1, 付田力2,3, 周雳2, 于天阳2, 郭伟玲2, 王海斗2,3
1 浙江工业大学机械工程学院,杭州 310014
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress on High Temperature Tribological Properties of Ternary MAX Phase Layered Ceramic Materials
ZHU Xianyong1,2, DING Zhenyu1, MA Guozheng2, PIAO Zhongyu1, FU Tianli2,3, ZHOU Li2, YU Tianyang2, GUO Weiling2, WANG Haidou2,3
1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 6727KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代工业的发展,传统润滑油脂难以满足高温工况下零部件的润滑需求,三元MAX相层状陶瓷材料作为一种具有自润滑性能的新型材料,在高温耐磨自润滑领域得到了国内外学者的广泛关注。MAX相材料自润滑原理为:在摩擦力、热作用力下,M位和A位元素扩散至材料的表面并与环境中的氧气结合,持续生成稳定的氧化物润滑膜,该润滑膜能有效地降低材料的摩擦系数和磨损率。目前,通过试验合成的MAX相已多达80余种,其中研究最为广泛的三种材料体系为钛硅碳及其复合材料、钛铝碳及其复合材料和铬铝碳及其复合材料。
本文主要介绍了MAX相材料及其复合材料的力学和摩擦学性能,通过分析可发现MAX相陶瓷复合材料的组成、工况条件及制备工艺技术对材料的摩擦学性能有重要影响。MAX相复合材料成分之间需要良好的润湿性,以便于形成致密均匀的复合材料,如钛硅碳与镍的润湿性不佳,但与铜的润湿性较好。MAX相自润滑材料在低于400 ℃的温度及轻载条件下难以形成稳定的氧化物润滑膜;同时较低温度的制备技术能有效地防止MAX相材料在制备过程中热分解,更有利于材料表面润滑膜的形成。值得注意的是,钛铝碳材料在室温环境下能向其表面释放碳元素并石墨化,其室温至400 ℃的摩擦学性能优于其他MAX相材料。通过对不同A位元素的MAX相材料分析对比发现,Al元素在材料中的扩散速度高于Si、Ge等元素,故与含硅MAX相复合材料相比,含铝MAX相材料氧化膜形成速度更快且抗氧化性更优,同时原位生成的氧化物能修复材料中微纳米级的裂纹。
本文还介绍了一些在核工业、储能材料、超导材料等特殊领域具有应用潜力的新型MAX相材料,最后分析总结了MAX相材料本征特征及制备技术对其大范围工程应用的一些限制,并展望了其在宽温域自润滑材料及复杂工程零部件上的应用前景和研究方向,以期为MAX相材料在高温耐磨自润滑领域的工程应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱咸勇
丁振宇
马国政
朴钟宇
付田力
周雳
于天阳
郭伟玲
王海斗
关键词:  MAX相  高温自润滑  摩擦系数  磨损率    
Abstract: With the development of modern industry, traditional lubricating greases are difficult to meet the lubrication requirements of parts under high temperature conditions. As a new high-temperature self-lubricating material with a ternary laminar structure, MAX phase has received extensive attention from scholars at home and abroad in the field of high-temperature wear-resistant self-lubrication. The self-lubricating principle of MAX phase materials is that the M-position and A-position elements diffuse to the surface of the material and combine with the oxygen in the environment under the friction or thermal force, continuously forming a stable oxide lubricating film which can effectively reduce the friction coefficient and wear rate of the material. More than 80 kinds of MAX phases can be synthesized through experiments. Three of the most widely studied material systems are titanium-silicon carbon and their composites, titanium-aluminum carbon and their composites, and chromium-aluminum carbon and their composites.
This paper focuses on the mechanical and tribological properties of the above three MAX phase materials and their composites. It is analytically found that the composition, working conditions and preparation technology of MAX phase ceramic composites have an important impact on the tribological properties of the materials. Good wettability is required between the components of MAX phase composites in order to form dense and uniform composites. For example, titanium silicon carbon has poor wettability with nickel but good wettability with copper. MAX phase self-lubricating material is difficult to form stable oxide lubricating film at lower temperature than 400 ℃ and under light load, and meanwhile the preparation technology at lower temperature can effectively prevent MAX phase materials from the thermal decomposition in the preparation process, which is more conducive to the formation of lubricating film on the surface of materials. It is worth noting that the titanium-aluminum-carbon material can release carbon to the surface and graphitize at room temperature, and its tribological properties at room temperature to 400 ℃ are better than other MAX phase materials. Through the analysis and comparison of MAX phase materials with different A-site elements, it is found that the diffusion rate of Al in the material is higher than that of Si, Ge and other elements, so the oxidation film formation rate and oxidation resistance of aluminum containing MAX phase materials are better than that of silicon containing MAX phase composites. At the same time, the oxides formed in situ by aluminum containing MAX phase materials can repair micro and nano cracks in the materials.
Some new MAX phase materials with application potential in special fields, such as nuclear industry, energy storage materials and superconducting materials, are also introduced in this paper. Finally, the intrinsic characteristics and preparation technology of MAX phase materials are analyzed and summarized, and their application prospect and research direction in wide temperature range self-lubricating materials and complex engineering parts are prospected, in order to provide reference for the engineering application of MAX phase materials in high temperature wear-resistant self-lubricating field.
Key words:  MAX phase    high temperature self-lubricating    friction coefficient    wear rate
发布日期:  2022-04-07
ZTFLH:  TB35  
基金资助: 国家自然科学基金(52075543;52122508;52130509)
通讯作者:  zyding@zjut.edu.cn; magz0929@163.com   
作者简介:  朱咸勇,2015年6月于华东交通大学获得工学学士学位。现为浙江工业大学机械工程学院博士研究生,在丁振宇副研究员和马国政副研究员的指导下进行研究。目前主要研究领域为表面工程。
丁振宇,浙江工业大学机械工程学院副研究员、博士研究生导师。2007年浙江工业大学测控技术与仪器专业本科毕业,2010年浙江工业大学化工过程机械专业硕士毕业,2013年浙江工业大学化工过程机械专业博士毕业后到浙江工业大学工作至今。目前主要从事疲劳断裂、减振技术和功能安全分析技术研究工作。发表论文10余篇,包括International Journal of Fatigue、Theoretical and Applied Fracture Mechanics、Engineering Fracture Mechanics等。
马国政,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。2008年西北工业大学材料成型及控制工程专业本科毕业,2014年解放军装甲兵工程学院材料加工工程专业博士毕业后留校工作至今,目前主要从事装备极端工况摩擦学和表面强化改性涂层等方面的研究工作。发表论文100余篇,包括Nano Letters,ACS Applied Materials & Interfaces,Journal of Materials Science & Techonlogy等。2016年入选中国科协青年人才托举工程,2021年获得国家自然科学基金优秀青年科学基金。
引用本文:    
朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
ZHU Xianyong, DING Zhenyu, MA Guozheng, PIAO Zhongyu, FU Tianli, ZHOU Li, YU Tianyang, GUO Weiling, WANG Haidou. Research Progress on High Temperature Tribological Properties of Ternary MAX Phase Layered Ceramic Materials. Materials Reports, 2022, 36(7): 21090166-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090166  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21090166
1 Tian L, Fu C, Li M Y, et al. Progress in Physics, 2021, 41(1), 39(in Chinese).
田莉, 付超, 李明月, 等. 物理学进展,2021,41(1),39.
2 Li J H, Zhang C, Wang X H. Advanced Ceramics, 2017, 38(1), 3(in Chinese).
李建华, 张超, 王晓辉. 现代技术陶瓷, 2017, 38(1),3.
3 Cao J, Yin Z, Li H, et al. Ceramics International, 2018, 44(1), 1046.
4 Gilbert C J, Bloyer D R, Barsoum M W, et al. Scripta Mater, 2000, 42, 761.
5 John P J, Prasad S V, Voevodin A A, et al. Wear, 1998, 219, 155.
6 Chen Z, Yan H, Zhang P,et al. Surface and Coatings Technology, 2019, 372, 218.
7 Sliney H E. Tribology International, 1982, 15, 303.
8 Liu J W, Zhou H M, Zhou W, et al. China Mechanical Engineering, 2016, 27(15), 2069(in Chinese).
刘景文, 周后明, 周文, 等. 中国机械工程, 2016, 27(15), 2069.
9 Liu X, Shi X, Lu G, et al. Journal of Alloys and Compounds, 2019, 777, 271.
10 Bai Y L, Yin H, Song G P, et al. Journal of Materials Engineering, 2021,49(5), 1(in Chinese).
柏跃磊, 尹航, 宋广平, 等. 材料工程, 2021, 49(5), 1.21090166-21090166-
11 Huang Q, Chai Z, Du S, et al. Journal of Inorganic Materials, 2021,36(7), 773.
12 Zamulaeva E I, Levashov E A, Sviridova T A, et al. Surface and Coa-tings Technology, 2013, 235, 454.
13 Liu Y, Deng X, Shi X,et al. Materials Research Express, 2018,5(6), 066539.
14 Yan H, Liu K, Zhang P, et al. Optics & Laser Technology, 2020,126,106077.
15 Wang Y G, Liu H J, Hui L, et al. Journal of Materials Engineering, 2019, 47(5), 72(in Chinese).
王勇刚, 刘和剑, 回丽, 等.材料工程, 2019, 47(5), 72.
16 Wang Y, Liu X B, Liu Y F,et al. Ceramics International, 2020, 46(18), 28996.
17 Yu W, Vallet M, Levraut B, Gauthier-Brunet V, et al. Journal of the European Ceramic Society, 2020, 40(5), 1820.
18 Magnus C, Cooper D, Sharp J,et al. Wear, 2019,438,203013.
19 Jeitschko W, Nowotny H. Monatshefte für Chemie, 1967, 98, 329.
20 Hong X Z, Zhen Y H, Ming X A, et al. Journal of the American Ceramic Society, 2005, 88(11), 3270.
21 Cui B, Jayaseelan D D, Lee W E. Scripta Materialia,2012,67(10),830.
22 Davis D, Marappan G, Sivalingam Y,et al. ACS Omega, 2020, 5(24), 14669.
23 Lin Z J, Zhou Y C, Li M S, et al. Zeitschrift Für Metallkunde, 2005,96, 291.
24 Lee D B, Nguyen T D, Park S W. Oxidation of Metals, 2012, 77(5), 275.
25 Yu W B, Zhao H B, Hu X S. Journal of Alloys and Compounds, 2018, 732, 894.
26 Berger O. Surface Engineering, 2019, 36(3), 225.
27 Pampuch R, Lis J, Stobierski L,et al. Journal of the European Ceramic Society, 1989, 5(5), 283.
28 Finkel P, Barsoum M W, El-Raghy T. Journal of Applied Physics, 2000, 87(4), 1701.
29 Chen D, Shirato K, Barsoum M W, et al. Journal of American Ceramic Society, 2001, 84, 2914.
30 Radovic M, Barsoum M W, El-Raghy T, et al. Acta Materialia, 2002, 50, 1297.
31 Barsoum M W, El-Raghy T. Journal of the American Ceramic Society, 1996, 79, 1953.
32 Barsoum M W. Progress in Solid State Chemistry, 2000, 28, 201.
33 Liu Y, Zhang J B, Li Y, et al. Materials Reports, 2015, 29(S2), 517(in Chinese).
刘耀, 张建波, 李勇, 等.材料导报, 2015, 29(S2), 517.
34 El-Raghy T, Zavaliangos A, Barsoum M W, et al. Journal of the American Ceramic Society, 1997, 80, 513.
35 Hu C F, Zhou Y C, Bao Y W, et al. Journal of the American Ceramic Society,2006, 89(11), 3456.
36 Li H Y, Zhou Y, Cui A, et al. International Journal of Applied Ceramic Technology, 2016, 13(4), 636.
37 Deng X B, Shi X L, Liu X Y, et al. Journal of Materials Engineering and Performance, 2017, 26(9), 4595.
38 Xu Z S, Xue B, Shi X L, et al. Tribology Transactions,2014,58(1),87.
39 Zhai W Z, Shi X L, Wang M, et al. Tribology Transactions, 2014, 57(3), 416.
40 Yuan D F, Zou Q, Li Y G, et al. Diamond & Abrasives Engineering, 2019, 39(6), 30(in Chinese).
袁东方, 邹芹, 李艳国, 等. 金刚石与磨料磨具工程,2019,39(6),30.
41 Li H, Peng L M, Gong M, et al. Materials Letters, 2005, 59(21), 2647.
42 Li L X, Liu X Q, Ding C G, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(2), 424(in Chinese).
李立鑫, 柳学全, 丁存光, 等.中国有色金属学报, 2014, 24(2), 424.
43 Lu J R, Zhou Y, Li H Y, et al. Journal of Inorganic Materials, 2014, 29(12), 1313(in Chinese).
路金蓉, 周洋, 李海燕, 等.无机材料学报, 2014, 29(12), 1313.
44 Yang D X, Zhou Y, Yan X H, et al. Journal of Advanced Ceramics, 2020, 9(1), 83.
45 Zhang J B, Liu W Y, Jin Y M, et al. Journal of Alloys and Compounds, 2018, 738, 1.
46 Chen Y, Shi X L, Zhai W Z, et al. Materials Research Express, 2018, 5(6), 066528.
47 Gupta S, Hammann T, Johnson R, et al. Tribology Transactions, 2015, 58(3), 560.
48 Zhai W Z, Shi X L, Xu Z S, et al. Journal of Materials Engineering and Performance, 2014, 23(4), 1374.
49 Feng S P, Zhou X C, Zhang Q X. Journal of Wuhan University of Technology (Materials Science Edition), 2019, 34(3), 698.
50 He P F, Wang H D, Ma G Z, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(11), 2962(in Chinese).
何鹏飞, 王海斗, 马国政, 等. 中国有色金属学报, 2015, 25(11), 2962.
51 Xu Z S, Zhang Q X, Shi X L, et al. Tribology Transactions, 2015, 58(6), 1131.
52 Yao J, Shi X, Zhai W, et al. Journal of Materials Engineering and Performance, 2014, 24(1), 280.
53 Zhai W Z, Shi X L, Yao J, et al. Tribology Transactions, 2015, 58(3), 454.
54 Shi X L, Yao J, Xu Z S, et al. Materials & Design, 2014, 53, 620.
55 Xu Z S, Shi X L, Zhang Q X, et al. Tribology Letters,2014,55(3),393.
56 Shi X L, Zhai W Z, Wang M, et al. Wear, 2013, 303, 244.
57 Ren S F, Meng J H, Lu J J, et al. Tribology Letters, 2008, 31(2) 229.
58 Zhou A G, Wang C A, Huang Y. Materials Science and Engineering: A, 2003, 352(1), 333.
59 Ai T T, Wang F, Feng X M, et al. Ceramics International, 2014, 40(7), 9947.
60 Guo J M, Wang B S, Chen K X, et al. Rare Metal Materials and Engineering, 2007, 36(5), 865(in Chinese).
郭俊明,王宝森,陈克新,等. 稀有金属材料与工程,2007,36(5),865.
61 Zhang Z, Duan X M, Jia D C, et al. Journal of the European Ceramic Society, 2021, 41(7), 3851.
62 Yu W, Zhao H, Huang Z, et al. Materials Characterization, 2017, 127, 53.
63 Lindquist M, Wilhelmsson O, Jansson U, et al. Wear,2009,266(9),988.
64 Zhang Z, Lim S H, Chai J W, et al. Surface and Coatings Technology, 2017, 325, 429.
65 Zhang Z, Lim S H, Lai D M Y, et al. Journal of the European Ceramic Society, 2017, 37(1), 43.
66 Lindquist M, Wilhelmsson O, Jansson U,et al. Wear,2009,266(3),379.
67 Song X J, Cui H Z, Hou N, et al. Ceramics International, 2016, 42(12), 13586.
68 Wei L X, Liu J Q, Wu X L, et al. Journal of Alloys and Compounds, 2020. 813, 152200.
69 Cheng J, Li F, Fu L C, et al. Tribology Letters, 2013, 53(2), 457.
70 Huang Z Y, Zhai H X, Zhou W, et al. Tribology Letters, 2007, 27(2), 129.
71 Liu X, Zhai H X, Huang Z Y. Journal of the Chinese Ceramic Society, 2007, 35(7), 1912(in Chinese).
刘新, 翟洪祥, 黄振莺. 硅酸盐学报, 2007, 35(7), 1912.
72 Kisi E H, Wu E, Zobec J S, et al. Journal of the American Ceramic Society, 2007, 90(6), 1912.
73 Cai L, Huang Z, Hu W,et al. Ceramics International, 2021, 47(5), 6352.
74 Imtyazuddin M, Mir A H, Tunes M A, et al. Journal of Nuclear Mate-rials, 2019, 526, 151742.
75 Lin Z J, Zhou Y C, LI M S. Journal of Materials Science & Technology, 2007, 23, 721.
76 Tan L, Guan C L, Tian Y, et al. Journal of the Ceramic Society of Japan, 2019, 127(10), 754.
77 Mráz S, Tyra M, to Baben M, et al. Journal of the European Ceramic Society, 2020, 40(4), 1119.
78 Smialek J L, Nesbitt J A, Gabb T P, et al. Materials Science and Engineering: A, 2018, 711, 119.
79 Qureshi M W, Ma X X, Tang G Z, et al. Materials(Basel), 2021, 14(4), 826.
80 Lin Z J, Li M S, Wang J Y, et al. Acta Materialia, 2007, 55(18), 6182.
81 Zhang Z R, Qian Y H, Xu J J, et al. Corrosion Science, 2021, 178, 109062.
82 Eichner D, Schlieter A, Leyens C,et al. Wear, 2018, 402, 187.
83 Völker B, Stelzer B, Mráz S, et al. Materials & Design, 2021, 206, 109757.
84 Yu W B, Li S B, Sloof W G. Materials Science and Engineering: A, 2010,527(21), 5997.
85 Davis D, Srivastava M, Malathi M, et al. Applied Surface Science, 2018, 449, 295.
86 Wang Y C, Xu J G, Peng G H, et al. Hot Working Technology, 2017, 46(4), 62(in Chinese).
王雨晨, 许剑光, 彭桂花, 等. 热加工工艺, 2017, 46(4), 62.
87 Tang L, He P F, Kang J J, et al. Tribology International, 2020, 146, 106265.
88 Zamulaeva E I, Levashov E A, Skryleva E A, et al. Surface and Coatings Technology, 2016, 298, 15.
89 Wang Q M, Garkas W, Renteria A F, et al. In: Conference Record of 3rd International Congress on Ceramics (ICC3): Hybrid and Nano-Structured Materials, Osaka, 2011, pp. 82025.
90 Groner L, Mengis L, Galetz M, et al. Materials(Basel), 2020, 13(9), 2085.
91 Gröner L, Kirste L, Oeser S, et al. Surface & Coatings Technology, 2018, 343, 166.
92 Grieseler R, Kups T, Wilke M, et al. Materials Letters, 2012, 82, 74.
93 Wang T, Chen Z, Wang G Q, et al. Journal of the European Ceramic Society, 2018, 38(15), 4892.
94 Filimonov D, Gupta S, Palanisamy T,et al. Tribology Letters, 2008, 33(1), 9.
95 Chen K, Bai X J, Mu X L, et al. Journal of the European Ceramic Society, 2021, 41(8), 4447.
96 Zhao S S, Dall’Agnese Y, Chu X F, et al. ACS Energy Letters, 2019, 4(10), 2452.
97 Hadi M A, Kelaidis N, Naqib S H, et al. Journal of Physics and Chemistry of Solids, 2021, 149, 109759.
98 Liu Y S, Lu C J, Zhang P G, et al. Acta Materialia, 2020,185,433.
99 Dubois S, Cabioc′h T, Chartier P,et al. Journal of the American Ceramic Society, 2007, 90(8), 2642.
100 Hadi M A, Kelaidis N, Naqib S H, et al. Journal of Physics and Chemistry of Solids, 2019,129, 162.
101 Bakardjieva S, Horak P, Vacik J, et al. Surface and Coatings Technology, 2020, 394, 125834.
102 Mane R B, Vijay R, Panigrahi B B, et al. Materials Letters, 2021, 282, 128853.
103 Mane R B, Sahoo R, Reddy B K S, et al. Journal of the American Ceramic Society, 2021, 104(7), 2932.
104 Li C L, Wang Z Q. Journal Applied Physics, 2010, 107(12), 123511.
105 Jiao Z Y, Ma S H, Wang T X. Solid State Sciences, 2015, 39, 97.
106 Horlait D, Grasso S, Chroneos A, et al. Materials Research Letters, 2016, 4(3),137.
107 Hu C F, Zhang J, Bao Y W, et al. International Journal of Materials Research, 2008, 99(1), 8.
108 Hu C F, He L F, Zhang J, et al. Journal of the European Ceramic Society, 2008, 28(8), 1679.
109 Chang Y Y, Wu C J. Surface and Coatings Technology,2013,231,62.
[1] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[2] 罗恒, 王优强, 张平. 双液淬火下7A09铝合金的干滑动摩擦磨损性能[J]. 材料导报, 2020, 34(24): 24109-24113.
[3] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[4] 苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
[5] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[6] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[7] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[8] 李锐, 任德均, 陈翔, 王晓杰. 各向同性磁流变橡胶材料的摩擦实验研究*[J]. 《材料导报》期刊社, 2017, 31(2): 64-68.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed